@article{DominguezTiedemannReboredaetal.2017, author = {Dominguez, Marisol and Tiedemann, Ralph and Reboreda, Juan C. and Segura, Luciano and Tittarelli, Fabian and Mahler, Bettina}, title = {Genetic structure reveals management units for the yellow cardinal (Gubernatrix cristata), endangered by habitat loss and illegal trapping}, series = {Conservation genetics}, volume = {18}, journal = {Conservation genetics}, publisher = {Springer}, address = {Dordrecht}, issn = {1566-0621}, doi = {10.1007/s10592-017-0964-4}, pages = {1131 -- 1140}, year = {2017}, language = {en} } @misc{PokornySharmaGoyaletal.2011, author = {Pokorny, Ina and Sharma, Reeta and Goyal, Surendra Prakash and Mishra, Sudanshu and Tiedemann, Ralph}, title = {MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris) (vol 10, pg 667, 2010)}, series = {Immunogenetics}, volume = {63}, journal = {Immunogenetics}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0093-7711}, doi = {10.1007/s00251-010-0496-2}, pages = {121 -- 121}, year = {2011}, language = {en} } @article{DiGiacomoDiGiacomoKligeretal.2015, author = {Di Giacomo, Adrian S. and Di Giacomo, Alejandro G. and Kliger, Rafi and Reboreda, Juan C. and Tiedemann, Ralph and Mahler, Bettina}, title = {No evidence of genetic variation in microsatellite and mitochondrial DNA markers among remaining populations of the Strange-tailed Tyrant Alectrurus risora, an endangered grassland species}, series = {Bird conservation international}, volume = {25}, journal = {Bird conservation international}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0959-2709}, doi = {10.1017/S0959270914000203}, pages = {127 -- 138}, year = {2015}, abstract = {The Strange-tailed Tyrant Alectrurus risora (Aves: Tyrannidae) is an endemic species of southern South American grasslands that suffered a 90\% reduction of its original distribution due to habitat transformation. This has led the species to be classified as globally Vulnerable. By the beginning of the last century, populations were partially migratory and moved south during the breeding season. Currently, the main breeding population inhabits the Ibera wetlands in the province of Corrientes, north-east Argentina, where it is resident all year round. There are two remaining small populations in the province of Formosa, north-east Argentina, and in southern Paraguay, which are separated from the main population by the Parana-Paraguay River and its continuous riverine forest habitat. The populations of Corrientes and Formosa are separated by 300 km and the grasslands between populations are non-continuous due to habitat transformation. We used mtDNA sequences and eight microsatellite loci to test if there were evidences of genetic isolation between Argentinean populations. We found no evidence of genetic structure between populations (Phi(ST) = 0.004, P = 0.32; Fst = 0.01, P = 0.06), which can be explained by either retained ancestral polymorphism or by dispersal between populations. We found no evidence for a recent demographic bottleneck in nuclear loci. Our results indicate that these populations could be managed as a single conservation unit on a regional scale. Conservation actions should be focused on preserving the remaining network of areas with natural grasslands to guarantee reproduction, dispersal and prevent further decline of populations.}, language = {en} } @article{DolgenerFreudenbergerSchneeweissetal.2014, author = {Dolgener, Nicola and Freudenberger, L. and Schneeweiss, N. and Ibisch, P. L. and Tiedemann, Ralph}, title = {Projecting current and potential future distribution of the Fire-bellied toad Bombina bombina under climate change in north-eastern Germany}, series = {Regional environmental change}, volume = {14}, journal = {Regional environmental change}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-013-0468-9}, pages = {1063 -- 1072}, year = {2014}, abstract = {Environmental change is likely to have a strong impact on biodiversity, and many species may shift their distribution in response. In this study, we aimed at projecting the availability of suitable habitat for an endangered amphibian species, the Fire-bellied toad Bombina bombina, in Brandenburg (north-eastern Germany). We modelled a potential habitat distribution map based on (1) a database with 10,581 presence records for Bombina from the years 1990 to 2009, (2) current estimates for ecogeographical variables (EGVs) and (3) the future projection of these EGVs according to the statistical regional model, respectively, the soil and water integrated model, applying the maximum entropy approach (Maxent). By comparing current and potential future distributions, we evaluated the projected change in distribution of suitable habitats and identified the environmental variables most associated with habitat suitability that turned out to be climatic variables related to the hydrological cycle. Under the applied scenario, our results indicate increasing habitat suitability in many areas and an extended range of suitable habitats. However, even if the environmental conditions in Brandenburg may change as predicted, it is questionable whether the Fire-bellied toad will truly benefit, as dispersal abilities of amphibian species are limited and strongly influenced by anthropogenic disturbances, that is, intensive agriculture, habitat destruction and fragmentation. Furthermore, agronomic pressure is likely to increase on productive areas with fertile soils and high water retention capacities, indeed those areas suitable for B. bombina. All these changes may affect temporary pond hydrology as well as the reproductive success and breeding phenology of toads.}, language = {en} } @article{DolgenerFreudenbergerSchlucketal.2014, author = {Dolgener, N. and Freudenberger, L. and Schluck, M. and Schneeweiss, N. and Ibisch, P. L. and Tiedemann, Ralph}, title = {Environmental niche factor analysis (ENFA) relates environmental parameters to abundance and genetic diversity in an endangered amphibian, the fire-bellied-toad (Bombina bombina)}, series = {Conservation genetics}, volume = {15}, journal = {Conservation genetics}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {1566-0621}, doi = {10.1007/s10592-013-0517-4}, pages = {11 -- 21}, year = {2014}, abstract = {Increasing attempts are made to understand the factors responsible for both the demographic and genetic depletion in amphibian populations. Landscape genetics aims at a spatially explicit correlation of genetic population parameters to landscape features. Using data from the endangered fire-bellied toad Bombina bombina in Brandenburg (Northeastern Germany), we performed an environmental niche factor analysis (ENFA), relating demographic (abundance) and genetic (diversity at 17 microsatellite loci and partial sequences of the mitochondrial control region in 434 individuals from 16 populations) parameters to ecological and anthropogenic variables such as temperature, precipitation, soil wetness, water runoff, vegetation density, and road/traffic impact. We found significant correlations between road disturbance and observed heterozygosity and between soil wetness and mitochondrial diversity. As the influences of the environmental variables can differ between different indicators for genetic diversity, population size and abundance data, our ENFA-based landscape genetics approach allows us to put various aspects of long- versus short term effective population size and genetic connectivity into an ecological and spatially explicit context, enabling potentially even forecast assessment under future environmental scenarios.}, language = {en} } @misc{RomeroMujalliJeltschTiedemann2018, author = {Romero-Mujalli, Daniel and Jeltsch, Florian and Tiedemann, Ralph}, title = {Individual-based modeling of eco-evolutionary dynamics}, series = {Regional environmental change}, volume = {19}, journal = {Regional environmental change}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-018-1406-7}, pages = {1 -- 12}, year = {2018}, abstract = {A challenge for eco-evolutionary research is to better understand the effect of climate and landscape changes on species and their distribution. Populations of species can respond to changes in their environment through local genetic adaptation or plasticity, dispersal, or local extinction. The individual-based modeling (IBM) approach has been repeatedly applied to assess organismic responses to environmental changes. IBMs simulate emerging adaptive behaviors from the basic entities upon which both ecological and evolutionary mechanisms act. The objective of this review is to summarize the state of the art of eco-evolutionary IBMs and to explore to what degree they already address the key responses of organisms to environmental change. In this, we identify promising approaches and potential knowledge gaps in the implementation of eco-evolutionary mechanisms to motivate future research. Using mainly the ISI Web of Science, we reveal that most of the progress in eco-evolutionary IBMs in the last decades was achieved for genetic adaptation to novel local environmental conditions. There is, however, not a single eco-evolutionary IBM addressing the three potential adaptive responses simultaneously. Additionally, IBMs implementing adaptive phenotypic plasticity are rare. Most commonly, plasticity was implemented as random noise or reaction norms. Our review further identifies a current lack of models where plasticity is an evolving trait. Future eco-evolutionary models should consider dispersal and plasticity as evolving traits with their associated costs and benefits. Such an integrated approach could help to identify conditions promoting population persistence depending on the life history strategy of organisms and the environment they experience.}, language = {en} } @article{ParaskevopoulouDennisWeithoffetal.2020, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Tiedemann, Ralph}, title = {Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-70173-0}, pages = {15}, year = {2020}, abstract = {Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species' adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming.}, language = {en} } @article{ColangeliSchlaegelOberteggeretal.2019, author = {Colangeli, Pierluigi and Schl{\"a}gel, Ulrike E. and Obertegger, Ulrike and Petermann, Jana S. and Tiedemann, Ralph and Weithoff, Guntram}, title = {Negative phototactic response to UVR in three cosmopolitan rotifers: a video analysis approach}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {844}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-018-3801-y}, pages = {43 -- 54}, year = {2019}, language = {en} } @misc{NeyeWallschlaegerTiedemann2006, author = {Neye, Gundula and Wallschl{\"a}ger, Hans-Dieter and Tiedemann, Ralph}, title = {Song dialect boundaries in the Yellowhammer: Do they restrict gene flow?}, series = {Journal of ornithology}, volume = {147}, journal = {Journal of ornithology}, number = {Supplement 1}, publisher = {Blackwell}, address = {New York}, issn = {0021-8375}, pages = {219 -- 219}, year = {2006}, language = {en} } @misc{TiedemannPfautsch2006, author = {Tiedemann, Ralph and Pfautsch, Simone}, title = {MHC evolution in ducks and allies}, series = {Journal of ornithology}, volume = {147}, journal = {Journal of ornithology}, number = {Supplement 1}, publisher = {Blackwell}, address = {New York}, issn = {0021-8375}, pages = {48 -- 48}, year = {2006}, language = {en} }