@article{MohsenKindSobolevetal.2006, author = {Mohsen, Ayman and Kind, Rainer and Sobolev, Stephan Vladimir and Weber, Michael}, title = {Thickness of the lithosphere east of the Dead Sea Transform}, series = {Geophysical journal international}, volume = {167}, journal = {Geophysical journal international}, number = {2}, publisher = {Blackwell}, address = {Oxford}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2006.03185.x}, pages = {845 -- 852}, year = {2006}, abstract = {We use the S receiver function method to study the lithosphere at the Dead Sea Transform (DST). A temporary network of 22 seismic broad-band stations was operated on both sides of the DST from 2000 to 2001 as part of the DESERT project. We also used data from six additional permanent broad-band seismic stations at the DST and in the surrounding area, that is, in Turkey, Saudi Arabia, Egypt and Cyprus. Clear S-to-P converted phases from the crust-mantle boundary (Moho) and a deeper discontinuity, which we interpret as lithosphere-asthenosphere boundary (LAB) have been observed. The Moho depth (30-38 km) obtained from S receiver functions agrees well with the results from P receiver functions and other geophysical data. We observe thinning of the lithosphere on the eastern side of the DST from 80 km in the north of the Dead Sea to about 65 km at the Gulf of Aqaba. On the western side of the DST, the few data indicate a thin LAB of about 65 km. For comparison, we found a 90-km-thick lithosphere in eastern Turkey and a 160-km-thick lithosphere under the Arabian shield, respectively. These observations support previous suggestions, based on xenolith data, heat flow observations, regional uplift history and geodynamic modelling, that the lithosphere around DST has been significantly thinned in the Late Cenozoic, likely following rifting and spreading of the Red Sea.}, language = {en} } @article{WolbernJacobBlakeetal.2006, author = {Wolbern, I and Jacob, A. W. B. and Blake, T. A. and Kind, Rainer and Li, X and Yuan, X. H and Duennebier, F and Weber, Michael H.}, title = {Deep origin of the Hawaiian tilted plume conduit derived from receiver functions}, doi = {10.1111/j.1365-246X.2006.03036.x}, year = {2006}, abstract = {We employ P to S converted waveforms to investigate effects of the hot mantle plume on seismic discontinuities of the crust and upper mantle. We observe the Moho at depths between 13 and 17 km, regionally covered by a strong shallow intracrustal converted phase. Coherent phases on the transverse component indicate either dipping interfaces, 3- D heterogeneities or lower crustal anisotropy. We find anomalies related to discontinuities in the upper mantle down to the transition zone evidently related to the hot mantle plume. Lithospheric thinning is confirmed in greater detail than previously reported by Li et al., and we determine the dimensions of the low-velocity zone within the asthenosphere with greater accuracy. Our study mainly focuses on the temperature-pressure dependent discontinuities of the upper mantle transition zone. Effects of the hot diapir on the depths of mineral phase transitions are verified at both major interfaces at 410 and 660 km. We determine a plume radius of about 200 km at the 660 km discontinuity with a core zone of about 120 km radius. The plume conduit is located southwest of Big Island. A conduit tilted in the northeast direction is required in the upper mantle to explain the observations. The determined positions of deflections of the discontinuities support the hypothesis of decoupled upper and lower mantle convection}, language = {en} }