@article{MohsenKindSobolevetal.2006, author = {Mohsen, Ayman and Kind, Rainer and Sobolev, Stephan Vladimir and Weber, Michael}, title = {Thickness of the lithosphere east of the Dead Sea Transform}, series = {Geophysical journal international}, volume = {167}, journal = {Geophysical journal international}, number = {2}, publisher = {Blackwell}, address = {Oxford}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2006.03185.x}, pages = {845 -- 852}, year = {2006}, abstract = {We use the S receiver function method to study the lithosphere at the Dead Sea Transform (DST). A temporary network of 22 seismic broad-band stations was operated on both sides of the DST from 2000 to 2001 as part of the DESERT project. We also used data from six additional permanent broad-band seismic stations at the DST and in the surrounding area, that is, in Turkey, Saudi Arabia, Egypt and Cyprus. Clear S-to-P converted phases from the crust-mantle boundary (Moho) and a deeper discontinuity, which we interpret as lithosphere-asthenosphere boundary (LAB) have been observed. The Moho depth (30-38 km) obtained from S receiver functions agrees well with the results from P receiver functions and other geophysical data. We observe thinning of the lithosphere on the eastern side of the DST from 80 km in the north of the Dead Sea to about 65 km at the Gulf of Aqaba. On the western side of the DST, the few data indicate a thin LAB of about 65 km. For comparison, we found a 90-km-thick lithosphere in eastern Turkey and a 160-km-thick lithosphere under the Arabian shield, respectively. These observations support previous suggestions, based on xenolith data, heat flow observations, regional uplift history and geodynamic modelling, that the lithosphere around DST has been significantly thinned in the Late Cenozoic, likely following rifting and spreading of the Red Sea.}, language = {en} } @article{WolbernJacobBlakeetal.2006, author = {Wolbern, I and Jacob, A. W. B. and Blake, T. A. and Kind, Rainer and Li, X and Yuan, X. H and Duennebier, F and Weber, Michael H.}, title = {Deep origin of the Hawaiian tilted plume conduit derived from receiver functions}, doi = {10.1111/j.1365-246X.2006.03036.x}, year = {2006}, abstract = {We employ P to S converted waveforms to investigate effects of the hot mantle plume on seismic discontinuities of the crust and upper mantle. We observe the Moho at depths between 13 and 17 km, regionally covered by a strong shallow intracrustal converted phase. Coherent phases on the transverse component indicate either dipping interfaces, 3- D heterogeneities or lower crustal anisotropy. We find anomalies related to discontinuities in the upper mantle down to the transition zone evidently related to the hot mantle plume. Lithospheric thinning is confirmed in greater detail than previously reported by Li et al., and we determine the dimensions of the low-velocity zone within the asthenosphere with greater accuracy. Our study mainly focuses on the temperature-pressure dependent discontinuities of the upper mantle transition zone. Effects of the hot diapir on the depths of mineral phase transitions are verified at both major interfaces at 410 and 660 km. We determine a plume radius of about 200 km at the 660 km discontinuity with a core zone of about 120 km radius. The plume conduit is located southwest of Big Island. A conduit tilted in the northeast direction is required in the upper mantle to explain the observations. The determined positions of deflections of the discontinuities support the hypothesis of decoupled upper and lower mantle convection}, language = {en} } @article{MohsenHofstetterBocketal.2005, author = {Mohsen, Amjad and Hofstetter, Rami and Bock, G{\"u}nter and Kind, Rainer and Weber, Michael H. and Wylegalla, Kurt and Rumpker, Georg}, title = {A receiver function study across the Dead Sea Transform}, issn = {0956-540X}, year = {2005}, abstract = {We report on a receiver function study of the crust and upper mantle within DESERT, a multidisciplinary geophysical project to study the lithosphere across the Dead Sea Transform (DST). A temporary seismic network was operated on both sides of the DST between 2000 April and 2001 June. The depth of the Moho increases smoothly from about 30 to 34-38 km towards the east across the DST, with significant north-south variations east of the DST. These Moho depth estimates from receiver functions are consistent with results from steep-and wide-angle controlled-source techniques. Steep-angle reflections and receiver functions reveal an additional discontinuity in the lower crust, but only east of the DST. This leads to the conclusion that the internal crustal structure east and west of the DST is different. The P to S converted phases from both discontinuities at 410 and 660 km are delayed by 2 s with respect to the IASP91 global reference model. This would indicate that the transition zone is consistent with the global average, but the upper mantle above 410 km is 3-4 per cent slower than the standard earth model}, language = {en} } @article{YuanKindPedersen2005, author = {Yuan, X. H. and Kind, Rainer and Pedersen, H. A.}, title = {Seismic monitoring of the Indian Ocean tsunami}, issn = {0094-8276}, year = {2005}, abstract = {The 26 December 2004 Sumatra-Andaman earthquake of Mw 9.3 triggered a massive tsunami in the Indian Ocean. We here report on observations of the Indian Ocean tsunami at broadband seismic stations located on islands in the area. The tsunami induces long-period (> 1000 s) signals on the horizontal components of the sensor. Frequency-time analysis shows that the long-period signals cannot be due to seismic surface waves, but that it arrives at the expected time of the tsunami. The waveforms are well correlated to tide gauge observations at a location where both observations are available. To explain the signals we favour tilt due to coastal loading but we cannot at the present stage exclude gravitational effects. The density of broadband stations is expected to increase rapidly in the effort of building an earthquake monitoring system. They may unexpectedly become useful tsunami detectors as well}, language = {en} } @article{KummerowKindOnckenetal.2004, author = {Kummerow, J. and Kind, Rainer and Oncken, Onno and Giese, Peter and Ryberg, Trond and Wylegalla, Kurt and Scherbaum, Frank}, title = {A natural and controlled source seismic profile through the Eastern Alps : TRANSALP}, year = {2004}, abstract = {The combined passive and active seismic TRANSALP experiment produced an unprecedented high-resolution crustal image of the Eastern Alps between Munich and Venice. The European and Adriatic Mohos (EM and AM, respectively) are clearly imaged with different seismic techniques: near-vertical incidence reflections and receiver functions (RFs). The European Moho dips gently southward from 35 km beneath the northern foreland to a maximum depth of 55 km beneath the central part of the Eastern Alps, whereas the Adriatic Moho is imaged primarily by receiver functions at a relatively constant depth of about 40 km. In both data sets, we have also detected first-order Alpine shear zones, such as the Helvetic detachment, Inntal fault and SubTauern ramp in the north. Apart from the Valsugana thrust, receiver functions in the southern part of the Eastern Alps have also observed a north dipping interface, which may penetrate the entire Adriatic crust [Adriatic Crust Interface (ACI)]. Deep crustal seismicity may be related to the ACI. We interpret the ACI as the currently active retroshear zone in the doubly vergent Alpine collisional belt. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @misc{SodoudiYuanKindetal.2013, author = {Sodoudi, Forough and Yuan, Xiaohui and Kind, Rainer and Lebedev, Sergei and Adam, Joanne M-C. and K{\"a}stle, Emanuel and Tilmann, Frederik}, title = {Seismic evidence for stratification in composition and anisotropic fabric within the thick lithosphere of Kalahari Craton}, series = {Geochemistry, geophysics, geosystems}, volume = {14}, journal = {Geochemistry, geophysics, geosystems}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1002/2013GC004955}, pages = {5393 -- 5412}, year = {2013}, abstract = {Based on joint consideration of S receiver functions and surface-wave anisotropy we present evidence for the existence of a thick and layered lithosphere beneath the Kalahari Craton. Our results show that frozen-in anisotropy and compositional changes can generate sharp Mid-Lithospheric Discontinuities (MLD) at depths of 85 and 150-200 km, respectively. We found that a 50 km thick anisotropic layer, containing 3\% S wave anisotropy and with a fast-velocity axis different from that in the layer beneath, can account for the first MLD at about 85 km depth. Significant correlation between the depths of an apparent boundary separating the depleted and metasomatised lithosphere, as inferred from chemical tomography, and those of our second MLD led us to characterize it as a compositional boundary, most likely due to the modification of the cratonic mantle lithosphere by magma infiltration. The deepening of this boundary from 150 to 200 km is spatially correlated with the surficial expression of the Thabazimbi-Murchison Lineament (TML), implying that the TML isolates the lithosphere of the Limpopo terrane from that of the ancient Kaapvaal terrane. The largest velocity contrast (3.6-4.7\%) is observed at a boundary located at depths of 260-280 km beneath the Archean domains and the older Proterozoic belt. This boundary most likely represents the lithosphere-asthenosphere boundary, which shallows to about 200 km beneath the younger Proterozoic belt. Thus, the Kalahari lithosphere may have survived multiple episodes of intense magmatism and collisional rifting during the billions of years of its history, which left their imprint in its internal layering.}, language = {en} } @article{MohsenAschKindetal.2013, author = {Mohsen, Ayman and Asch, G{\"u}nter and Kind, Rainer and Mechie, James and Weber, Michael H.}, title = {The lithosphere-asthenosphere boundary in the eastern part of the Dead Sea Basin (DSB) from S-to-P receiver functions}, series = {Arabian journal of geosciences}, volume = {6}, journal = {Arabian journal of geosciences}, number = {7}, publisher = {Springer}, address = {Heidelberg}, issn = {1866-7511}, doi = {10.1007/s12517-011-0503-4}, pages = {2343 -- 2350}, year = {2013}, abstract = {Clear S-to-P converted waves from the crust-mantle boundary (Moho) and lithosphere-asthenosphere boundary (LAB) have been observed on the eastern part of the Dead Sea Basin (DSB), and are used for the determination of the depth of the Moho and the LAB. A temporary network consisting of 18 seismic broad-band stations was operated in the DSB region as part of the DEad Sea Integrated REsearch project for 1.5 years beginning in September 2006. The obtained Moho depth (similar to 35 km) from S-to-P receiver functions agrees well with the results from P-to-S receiver functions and other geophysical data. The thickness of the lithosphere on the eastern part of the DSB is about 75 km. The results obtained here support and confirm previous studies, based on xenolith data, geodynamic modeling, heat flow observations, and S-to-P receiver functions. Therefore, the lithosphere on the eastern part of the DSB and along Wadi Araba has been thinned in the Late Cenozoic, following rifting and spreading of the Red Sea. The thinning of the lithosphere occurred without a concomitant change in the crustal thickness and thus an upwelling of the asthenosphere in the study area is invoked as the cause of the lithosphere thinning.}, language = {en} } @article{MohsenAschMechieetal.2011, author = {Mohsen, Amjad and Asch, G{\"u}nter and Mechie, James and Kind, Rainer and Hofstetter, Rami and Weber, Michael H. and Stiller, M. and Abu-Ayyash, Khalil}, title = {Crustal structure of the Dead Sea Basin (DSB) from a receiver function analysis}, series = {Geophysical journal international}, volume = {184}, journal = {Geophysical journal international}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2010.04853.x}, pages = {463 -- 476}, year = {2011}, abstract = {The Dead Sea Transform (DST) is a major left-lateral strike-slip fault that accommodates the relative motion between the African and Arabian plates, connecting a region of extension in the Red Sea to the Taurus collision zone in Turkey over a length of about 1100 km. The Dead Sea Basin (DSB) is one of the largest basins along the DST. The DSB is a morphotectonic depression along the DST, divided into a northern and a southern sub-basin, separated by the Lisan salt diapir. We report on a receiver function study of the crust within the multidisciplinary geophysical project, DEad Sea Integrated REsearch (DESIRE), to study the crustal structure of the DSB. A temporary seismic network was operated on both sides of the DSB between 2006 October and 2008 April. The aperture of the network is approximately 60 km in the E-W direction crossing the DSB on the Lisan peninsula and about 100 km in the N-S direction. Analysis of receiver functions from the DESIRE temporary network indicates that Moho depths vary between 30 and 38 km beneath the area. These Moho depth estimates are consistent with results of near-vertical incidence and wide-angle controlled-source techniques. Receiver functions reveal an additional discontinuity in the lower crust, but only in the DSB and west of it. This leads to the conclusion that the internal crustal structure east and west of the DSB is different at the present-day. However, if the 107 km left-lateral movement along the DST is taken into account, then the region beneath the DESIRE array where no lower crustal discontinuity is observed would have lain about 18 Ma ago immediately adjacent to the region under the previous DESERT array west of the DST where no lower crustal discontinuity is recognized.}, language = {en} } @article{YuanSobolevKindetal.2000, author = {Yuan, X. H and Sobolev, Stephan Vladimir and Kind, Rainer and Oncken, Onno and Bock, G{\"u}nter and Asch, G{\"u}nter and Schurr, B. and Gr{\"a}ber, F. and Rudloff, Alexander and Hanka, W. and Wylegalla, Kurt and Tibi, R. and Haberland, Christian and Rietbrock, Andreas and Giese, Peter and Wigger, Peter and Rower, P. and Zandt, G. and Beck, S. and Wallace, T. and Pardo, M. and Comte, D.}, title = {Subduction and collision processes in the Central Andes constrained by converted seismic phases}, year = {2000}, language = {en} } @article{SchurrAschRietbrocketal.1999, author = {Schurr, B. and Asch, G{\"u}nter and Rietbrock, Andreas and Kind, Rainer and Pardo, M. and Heit, B. and Monfret, T.}, title = {Seismicity and average velocities beneath the Argentine Puna plateau}, year = {1999}, language = {en} }