@article{BeurskensHelmichReinetal.2014, author = {Beurskens, Rainer and Helmich, Ingo and Rein, Robert and Bock, Otmar L.}, title = {Age-related changes in prefrontal activity during walking in dual-task situations: A fNIRS study}, series = {International journal of psychophysiology}, volume = {92}, journal = {International journal of psychophysiology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8760}, doi = {10.1016/j.ijpsycho.2014.03.005}, pages = {122 -- 128}, year = {2014}, abstract = {Background: Previous studies suggest that the human gait is under control of higher-order cognitive processes, located in the frontal lobes, such that an age-related degradation of cognitive capabilities has a negative impact on gait. Results: Our behavioral data partly confirm previous accounts on higher dual-task costs in stepping parameters (i.e., decreased step duration) in old age, particularly with a visual task and negative dual-task cost (i.e., improved performance) during the verbal task in young adults. Functional imaging data revealed little change of prefrontal activation from single- to dual-task walking in young individuals. In the elderly, however, prefrontal activation substantially decreased during dual-task walking with a complex visual task. Conclusion: We interpret these findings as evidence for a shift of processing resources from the prefrontal cortex to other brain regions when seniors face the challenge of walking and concurrently executing a visually demanding task. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{BeurskensGollhoferMuehlbaueretal.2015, author = {Beurskens, Rainer and Gollhofer, Albert and M{\"u}hlbauer, Thomas and Cardinale, Marco and Granacher, Urs}, title = {Effects of Heavy-Resistance Strength and Balance Training on Unilateral and Bilateral Leg Strength Performance in Old Adults}, series = {PLoS one}, volume = {10}, journal = {PLoS one}, number = {2}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0118535}, pages = {13}, year = {2015}, abstract = {The term "bilateral deficit" (BLD) has been used to describe a reduction in performance during bilateral contractions when compared to the sum of identical unilateral contractions. In old age, maximal isometric force production (MIF) decreases and BLD increases indicating the need for training interventions to mitigate this impact in seniors. In a cross-sectional approach, we examined age-related differences in MIF and BLD in young (age: 20-30 years) and old adults (age: > 65 years). In addition, a randomized-controlled trial was conducted to investigate training-specific effects of resistance vs. balance training on MIF and BLD of the leg extensors in old adults. Subjects were randomly assigned to resistance training (n = 19), balance training (n = 14), or a control group (n = 20). Bilateral heavy-resistance training for the lower extremities was performed for 13 weeks (3 x /week) at 80\% of the one repetition maximum. Balance training was conducted using predominately unilateral exercises on wobble boards, soft mats, and uneven surfaces for the same duration. Pre-and post-tests included uni-and bilateral measurements of maximal isometric leg extension force. At baseline, young subjects outperformed older adults in uni-and bilateral MIF (all p < .001; d = 2.61-3.37) and in measures of BLD (p < .001; d = 2.04). We also found significant increases in uni-and bilateral MIF after resistance training (all p < .001, d = 1.8-5.7) and balance training (all p < .05, d = 1.3-3.2). In addition, BLD decreased following resistance (p < .001, d = 3.4) and balance training (p < .001, d = 2.6). It can be concluded that both training regimens resulted in increased MIF and decreased BLD of the leg extensors (HRT-group more than BAL-group), almost reaching the levels of young adults.}, language = {en} } @article{LesinskiPrieskeBeurskensetal.2017, author = {Lesinski, Melanie and Prieske, Olaf and Beurskens, Rainer and Behm, David George and Granacher, Urs}, title = {Effects of drop height and surface instability on neuromuscular activation during drop jumps}, series = {Scandinavian journal of medicine \& science in sports}, volume = {27}, journal = {Scandinavian journal of medicine \& science in sports}, publisher = {Wiley}, address = {Hoboken}, issn = {0905-7188}, doi = {10.1111/sms.12732}, pages = {1090 -- 1098}, year = {2017}, abstract = {The purpose of this study was to examine whether drop height-induced changes in leg muscle activity during drop jumps (DJ) are additionally modulated by surface condition. Twenty-four healthy participants (23.7 +/- 1.8years) performed DJs on a force plate on stable, unstable, and highly unstable surfaces using different drop heights (i.e., 20cm, 40cm, 60cm). Electromyographic (EMG) activity of soleus (SOL), gastrocnemius (GM), tibialis anterior (TA) muscles and coactivation of TA/SOL and TA/GM were analyzed for time intervals 100ms prior to ground contact (preactivation) and 30-60ms after ground contact [short latency response (SLR)]. Increasing drop heights resulted in progressively increased SOL and GM activity during preactivation and SLR (P<0.01; 1.01 d 5.34) while TA/SOL coactivation decreased (P<0.05; 0.51 d 3.01). Increasing surface instability produced decreased activities during preactivation (GM) and SLR (GM, SOL) (P<0.05; 1.36 d 4.30). Coactivation increased during SLR (P<0.05; 1.50 d 2.58). A significant drop heightxsurface interaction was observed for SOL during SLR. Lower SOL activity was found on unstable compared to stable surfaces for drop heights 40cm (P<0.05; 1.25 d 2.12). Findings revealed that instability-related changes in activity of selected leg muscles are minimally affected by drop height.}, language = {en} } @misc{BeurskensMuehlbauerGranacher2015, author = {Beurskens, Rainer and M{\"u}hlbauer, Thomas and Granacher, Urs}, title = {Association of dual-task walking performance and leg muscle quality in healthy children}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75100}, pages = {7}, year = {2015}, abstract = {Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children's dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7-9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability.}, language = {en} } @article{BeurskensMuehlbauerGranacher2015, author = {Beurskens, Rainer and M{\"u}hlbauer, Thomas and Granacher, Urs}, title = {Association of dual-task walking performance and leg muscle quality in healthy children}, series = {BMC pediatrics}, volume = {15}, journal = {BMC pediatrics}, number = {2}, publisher = {BioMed Central}, address = {London}, issn = {1471-2431}, doi = {10.1186/s12887-015-0317-8}, year = {2015}, abstract = {Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children's dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7-9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability.}, language = {en} } @article{LesinskiPrieskeBeurskensetal.2017, author = {Lesinski, Melanie and Prieske, Olaf and Beurskens, Rainer and Behm, David George and Granacher, Urs}, title = {Effects of Drop-height and Surface Instability on Jump Performance and Knee Kinematics}, series = {International journal of sports medicine}, volume = {39}, journal = {International journal of sports medicine}, number = {1}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0043-117610}, pages = {50 -- 57}, year = {2017}, abstract = {The purpose of this study was to examine the combined effects of drop-height and surface condition on drop jump (DJ) performance and knee joint kinematics. DJ performance, sagittal and frontal plane knee joint kinematics were measured in jump experienced young male and female adults during DJs on stable, unstable and highly unstable surfaces using different drop-heights (20, 40, 60 cm). Findings revealed impaired DJ performance (Δ5-16\%; p<0.05; 1.43≤d≤2.82), reduced knee valgus motion (Δ33-52\%; p<0.001; 2.70≤d≤3.59), and larger maximum knee flexion angles (Δ13-19\%; p<0.01; 1.74≤d≤1.75) when using higher (60 cm) compared to lower drop-heights (≤40 cm). Further, lower knee flexion angles and velocity were found (Δ8-16\%; p<0.01; 1.49≤d≤2.38) with increasing surface instability. When performing DJs from high (60 cm) compared to moderate drop-heights (40 cm) on highly unstable surfaces, higher knee flexion velocity and maximum knee valgus angles were found (Δ15-19\%; p<0.01; 1.50≤d≤1.53). No significant main and/or interaction effects were observed for the factor sex. In conclusion, knee motion strategies were modified by the factors 'drop-height' and/or 'surface instability'. The combination of high drop-heights (>40 cm) together with highly unstable surfaces should be used cautiously during plyometrics because this may increase the risk of injury due to higher knee valgus stress.}, language = {en} } @article{LesinskiPrieskeBordeetal.2018, author = {Lesinski, Melanie and Prieske, Olaf and Borde, Ron and Beurskens, Rainer and Granacher, Urs}, title = {Effects of Different Footwear Properties and Surface Instability on Neuromuscular Activity and Kinematics During Jumping}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {32}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {11}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002556}, pages = {3246 -- 3257}, year = {2018}, abstract = {The purpose of this study was to examine sex-specific effects of different footwear properties vs. barefoot condition during the performance of drop jumps (DJs) on stable and unstable surfaces on measures of jump performance, electromyographic (EMG) activity, and knee joint kinematics. Drop jump performance, EMG activity of lower-extremity muscles, as well as sagittal and frontal knee joint kinematics were tested in 28 healthy male (n = 14) and female (n = 14) physically active sports science students (23 6 2 years) during the performance of DJs on stable and unstable surfaces using different footwear properties (elastic vs. minimal shoes) vs. barefoot condition. Analysis revealed a significantly lower jump height and performance index (Delta 7-12\%; p < 0.001; 2.22 <= d = 2.90) during DJs on unstable compared with stable surfaces. This was accompanied by lower thigh/shank muscle activities (Delta 11-28\%; p < 0.05; 0.99 <= d = 2.16) and knee flexion angles (Delta 5-8\%; p < 0.05; 1.02 <= d = 2.09). Furthermore, knee valgus angles during DJs were significantly lower when wearing shoes compared with barefoot condition (Delta 22-32\%; p < 0.01; 1.38 <= d = 3.31). Sex-specific analyses indicated higher knee flexion angles in females compared with males during DJs, irrespective of the examined surface and footwear conditions (Delta 29\%; p < 0.05; d = 0.92). Finally, hardly any significant footwear-surface interactions were detected. Our findings revealed that surface instability had an impact on DJ performance, thigh/shank muscle activity, and knee joint kinematics. In addition, the single factors "footwear" and "sex" modulated knee joint kinematics during DJs. However, hardly any significant interaction effects were found. Thus, additional footwear-related effects can be neglected when performing DJs during training on different surfaces.}, language = {en} }