@article{ClarkFreyseYashinaetal.2022, author = {Clark, Oliver J. and Freyse, Friedrich and Yashina, L. V. and Rader, Oliver and Sanchez-Barriga, Jaime}, title = {Robust behavior and spin-texture stability of the topological surface state in Bi2Se3 upon deposition of gold}, series = {npj quantum materials}, volume = {7}, journal = {npj quantum materials}, number = {1}, publisher = {Nature Publishing Group}, address = {London}, issn = {2397-4648}, doi = {10.1038/s41535-022-00443-9}, pages = {7}, year = {2022}, abstract = {The Dirac point of a topological surface state (TSS) is protected against gapping by time-reversal symmetry. Conventional wisdom stipulates, therefore, that only through magnetisation may a TSS become gapped. However, non-magnetic gaps have now been demonstrated in Bi2Se3 systems doped with Mn or In, explained by hybridisation of the Dirac cone with induced impurity resonances. Recent photoemission experiments suggest that an analogous mechanism applies even when Bi2Se3 is surface dosed with Au. Here, we perform a systematic spin- and angle-resolved photoemission study of Au-dosed Bi2Se3. Although there are experimental conditions wherein the TSS appears gapped due to unfavourable photoemission matrix elements, our photon-energy-dependent spectra unambiguously demonstrate the robustness of the Dirac cone against high Au coverage. We further show how the spin textures of the TSS and its accompanying surface resonances remain qualitatively unchanged following Au deposition, and discuss the mechanism underlying the suppression of the spectral weight.}, language = {en} } @article{SajediKrivenkovMarchenkoetal.2022, author = {Sajedi, Maryam and Krivenkov, Maxim and Marchenko, Dmitry and Sanchez-Barriga, Jaime and Chandran, Anoop K. and Varykhalov, Andrei and Rienks, Emile D. L. and Aguilera, Irene and Bl{\"u}gel, Stefan and Rader, Oliver}, title = {Is there a polaron signature in Angle-Resolved Photoemission of CsPbBr3?}, series = {Physical review letters}, volume = {128}, journal = {Physical review letters}, number = {17}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.128.176405}, pages = {7}, year = {2022}, abstract = {The formation of large polarons has been proposed as reason for the high defect tolerance, low mobility, low charge carrier trapping, and low nonradiative recombination rates of lead halide perovskites. Recently, direct evidence for large-polaron formation has been reported from a 50\% effective mass enhancement in angle-resolved photoemission of CsPbBr3 over theory for the orthorhombic structure. We present in-depth band dispersion measurements of CsPbBr3 and GW calculations, which lead to similar effective masses at the valence band maximum of 0.203 1 0.016 m0 in experiment and 0.226 m0 in orthorhombic theory. We argue that the effective mass can be explained solely on the basis of electron-electron correlation and largepolaron formation cannot be concluded from photoemission data.}, language = {en} }