@article{QiuKruegerWilkeetal.2016, author = {Qiu, C. and Kr{\"u}ger, Y. and Wilke, Max and Marti, D. and Ricka, J. and Frenz, M.}, title = {Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {18}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp04250c}, pages = {28227 -- 28241}, year = {2016}, abstract = {We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996-916 kg m(-3)) in quartz. Microthermometric measurements include: (i) prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We used single ultrashort laser pulses to stimulate vapour bubble nucleation in initially monophase liquid inclusions. Water densities were calculated based on prograde homogenisation temperatures using the IAPWS-95 formulation. We found retrograde liquid-vapour homogenisation temperatures in excellent agreement with IAPWS-95. (ii) Retrograde ice nucleation. Raman spectroscopy was used to determine the nucleation of ice in the absence of the vapour bubble. Our ice nucleation data in the doubly metastable region are inconsistent with the low-temperature trend of the spinodal predicted by IAPWS-95, as liquid water with a density of 921 kg m(-3) remains in a homogeneous state during cooling down to a temperature of -30.5 degrees C, where it is transformed into ice whose density corresponds to zero pressure. (iii) Ice melting. Ice melting temperatures of up to 6.8 degrees C were measured in the absence of the vapour bubble, i.e. in the negative pressure region. (iv) Spontaneous retrograde and, for the first time, prograde vapour bubble nucleation. Prograde bubble nucleation occurred upon heating at temperatures above ice melting. The occurrence of prograde and retrograde vapour bubble nucleation in the same inclusions indicates a maximum of the bubble nucleation curve in the R-T plane at around 40 degrees C. The new experimental data represent valuable benchmarks to evaluate and further improve theoretical models describing the p-V-T properties of metastable water in the low-temperature region.}, language = {en} } @article{QiuBenjaminRamanVenkatesanetal.2020, author = {Qiu, Xunlin and Benjamin, Aravindan Joseph and Raman Venkatesan, Thulasinath and Schmidt, Georg C. and Soler, Ricardo Alonso Quintana and Panicker, Pramul Muraleedhara and Gerhard, Reimund and H{\"u}bler, Arved Carl}, title = {Dielectric and electroacoustic assessment of screen-printed piezoelectric polymer layers as flexible transducers}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {27}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {5}, publisher = {Institute of Electrical and Electronics Engineers}, address = {New York, NY}, issn = {1070-9878}, doi = {10.1109/TDEI.2020.008864}, pages = {1683 -- 1690}, year = {2020}, abstract = {Here, piezoelectric transducers consisting of a P(VDF-TrFE) layer with either silver or PEDOT:PSS screen-printed electrodes are studied. The influence of electrodes on the dielectric and electroacoustic properties are studied in dielectric-spectroscopy and ferroelectric-hysteresis measurements. Only when both the bottom and the top electrodes are made of silver, the typical dielectric relaxation of the P(VDF-TrFE) layer is clearly observed. When one or two of the electrodes are of PEDOT:PSS, a Debye-like relaxation is present. Compared with silver electrodes, PEDOT:PSS electrodes allow for moderate self-healing. Consequently, samples with bottom and top PEDOT:PSS electrodes can be poled to saturation, while samples with silver electrodes can hardly be poled to saturation due to destructive electric breakdown. Acoustic transducer measurements show that silver electrodes facilitate higher and broader frequency operation, while PEDOT:PSS electrodes bring slightly lower total harmonic distortion. Overall, the acoustic performance shows no significant deviations between differently electroded samples so that silver electrodes do not offer any advantages for the transducers studied here due to their much higher tendency for destructive electric breakdown.}, language = {en} }