@article{HeWangHeetal.2022, author = {He, Yushuang and Wang, Feipeng and He, Li and Wang, Qiang and Li, Jian and Qian, Yihua and Gerhard, Reimund and Plath, Ronald}, title = {An insight Into the role of Nano-Alumina on DC Flashover-Resistance and surface charge variation of Epoxy Nanocomposites}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {29}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {3}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2022.3173510}, pages = {1022 -- 1029}, year = {2022}, abstract = {The addition of nano-Al2O3 has been shown to enhance the breakdown voltage of epoxy resin, but its flashover results appeared with disputation. This work concentrates on the surface charge variation and dc flashover performance of epoxy resin with nano-Al2O3 doping. The dispersion of nano-Al2O3 in epoxy is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The dc flashover voltages of samples under either positive or negative polarity are measured with a finger-electrode system, and the surface charge variations before and after flashovers were identified from the surface potential mapping. The results evidence that nano-Al2O3 would lead to a 16.9\% voltage drop for the negative flashovers and a 6.8\% drop for positive cases. It is found that one-time flashover clears most of the accumulated surface charges, regardless of positive or negative. As a result, the ground electrode is neighbored by an equipotential zone enclosed with low-density heterocharges. The equipotential zone tends to be broadened after 20 flashovers. The nano-Al2O3 is noticed as beneficial to downsize the equipotential zone due to its capability on charge migration, which is reasonable to maintain flashover voltage at a high level after multiple flashovers. Hence, nano-Al2O3 plays a significant role in improving epoxy with high resistance to multiple flashovers.}, language = {en} } @article{WangZhangYanetal.2022, author = {Wang, Feipeng and Zhang, Zheng and Yan, Yuyang and Shen, Zijia and Wang, Qiang and Gerhard, Reimund}, title = {Surface reconstruction on electro-spun PVA/PVP nanofibers by water evaporation}, series = {Nanomaterials}, volume = {12}, journal = {Nanomaterials}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano12050797}, pages = {7}, year = {2022}, abstract = {Tailoring the secondary surface morphology of electro-spun nanofibers has been highly desired, as such delicate structures equip nanofibers with distinct functions. Here, we report a simple strategy to directly reconstruct the surface of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) nanofibers by water evaporation. The roughness and diameter of the nanofibers depend on the temperature during vacuum drying. Surface changes of the nanofibers from smooth to rough were observed at 55 degrees C, with a significant drop in nanofiber diameter. We attribute the formation of the secondary surface morphology to the intermolecular forces in the water vapor, including capillary and the compression forces, on the basis of the results from the Fourier-transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy. The strategy is universally effective for various electro-spun polymer nanofibers, thus opening up avenues toward more detailed and sophisticated structure design and implementation for nanofibers.}, language = {en} } @article{WilkinParrishYangetal.2019, author = {Wilkin, Kyle J. and Parrish, Robert M. and Yang, Jie and Wolf, Thomas J. A. and Nunes, J. Pedro F. and G{\"u}hr, Markus and Li, Renkai and Shen, Xiaozhe and Zheng, Qiang and Wang, Xijie and Martinez, Todd J. and Centurion, Martin}, title = {Diffractive imaging of dissociation and ground-state dynamics in a complex molecule}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {100}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.100.023402}, pages = {10}, year = {2019}, abstract = {We have investigated the structural dynamics in photoexcited 1,2-diiodotetrafluoroethane molecules (C2F4I2) in the gas phase experimentally using ultrafast electron diffraction and theoretically using FOMO-CASCI excited-state dynamics simulations. The molecules are excited by an ultraviolet femtosecond laser pulse to a state characterized by a transition from the iodine 5p perpendicular to orbital to a mixed 5p parallel to sigma hole and CF2 center dot antibonding orbital, which results in the cleavage of one of the carbon-iodine bonds. We have observed, with sub-Angstrom resolution, the motion of the nuclear wave packet of the dissociating iodine atom followed by coherent vibrations in the electronic ground state of the C2F4I radical. The radical reaches a stable classical (nonbridged) structure in less than 200 fs.}, language = {en} } @article{YangZhuWolfetal.2018, author = {Yang, Jie and Zhu, Xiaolei and Wolf, Thomas J. A. and Li, Zheng and Nunes, Jo{\~a}o Pedro Figueira and Coffee, Ryan and Cryan, James P. and G{\"u}hr, Markus and Hegazy, Kareem and Heinz, Tony F. and Jobe, Keith and Li, Renkai and Shen, Xiaozhe and Veccione, Theodore and Weathersby, Stephen and Wilkin, Kyle J. and Yoneda, Charles and Zheng, Qiang and Martinez, Todd J. and Centurion, Martin and Wang, Xijie}, title = {Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction}, series = {Science}, volume = {361}, journal = {Science}, number = {6397}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat0049}, pages = {64 -- 67}, year = {2018}, abstract = {Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation of both the umbrella and the breathing vibrational modes in the CF3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab initio nonadiabatic dynamics calculations.}, language = {en} } @article{FanvanWestenKorupetal.2012, author = {Fan, Xuanmei and van Westen, Cees J. and Korup, Oliver and Gorum, Tolga and Xu, Qiang and Dai, Fuchu and Huang, Runqiu and Wang, Gonghui}, title = {Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake, China}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {171}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2012.05.003}, pages = {58 -- 68}, year = {2012}, abstract = {Earthquake-triggered landslide dams are potentially dangerous disrupters of water and sediment flux in mountain rivers, and capable of releasing catastrophic outburst flows to downstream areas. We analyze an inventory of 828 landslide dams in the Longmen Shan mountains, China, triggered by the M-w 7.9 2008 Wenchuan earthquake. This database is unique in that it is the largest of its kind attributable to a single regional-scale triggering event: 501 of the spatially clustered landslides fully blocked rivers, while the remainder only partially obstructed or diverted channels in steep watersheds of the hanging wall of the Yingxiu-Beichuan Fault Zone. The size distributions of the earthquake-triggered landslides, landslide dams, and associated lakes (a) can be modeled by an inverse gamma distribution; (b) show that moderate-size slope failures caused the majority of blockages; and (c) allow a detailed assessment of seismically induced river-blockage effects on regional water and sediment storage. Monte Carlo simulations based on volumetric scaling relationships for soil and bedrock failures respectively indicate that 14\% (18\%) of the estimated total coseismic landslide volume of 6.4 (14.6) x 10(9) m(3) was contained in landslide dams, representing only 1.4\% of the >60,000 slope failures attributed to the earthquake. These dams have created storage capacity of similar to 0.6x 10(9) m(3) for incoming water and sediment. About 25\% of the dams containing 2\% of the total river-blocking debris volume failed one week after the earthquake; these figures had risen to 60\% (similar to 20\%), and >90\% (>90\%) within one month, and one:year, respectively, thus also emptying similar to 92\% of the total potential water and sediment storage behind these, dams within one year following the earthquake. Currently only similar to 0.08 x 10(9) m(3) remain available as natural reservoirs for storing water and sediment, while similar to 0.19 x 10(9) m(3), i.e. about a third of the total river-blocking debris volume, has been eroded by rivers. Dam volume and upstream catchment area control to first order the longevity of the barriers, and bivariate domain plots are consistent with the observation that most earthquake-triggered landslide dams were ephemeral. We conclude that the river-blocking portion of coseismic slope failures disproportionately modulates the post-seismic sediment flux in the Longmen Shan on annual to decadal timescales.}, language = {en} } @misc{XieJiaRollsetal.2021, author = {Xie, Chao and Jia, Tianye and Rolls, Edmund T. and Robbins, Trevor W. and Sahakian, Barbara J. and Zhang, Jie and Liu, Zhaowen and Cheng, Wei and Luo, Qiang and Zac Lo, Chun-Yi and Schumann, Gunter and Feng, Jianfeng and Wang, He and Banaschewski, Tobias and Barker, Gareth J. and Bokde, Arun L.W. and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivi{\`e}res, Sylvane and Flor, Herta and Grigis, Antoine and Garavan, Hugh and Gowland, Penny and Heinz, Andreas and Hohmann, Sarah and Ittermann, Bernd and Martinot, Jean-Luc and Paill{\`e}re Martinot, Marie-Laure and Nees, Frauke and Papadopoulos Orfanos, Dimitri and Paus, Tom{\´a}š and Poustka, Luise and Fr{\"o}hner, Juliane H. and Smolka, Michael N. and Walter, Henrik and Whelan, Robert}, title = {Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {3}, issn = {1866-8364}, doi = {10.25932/publishup-55788}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557882}, pages = {13}, year = {2021}, abstract = {BACKGROUND: The orbitofrontal cortex (OFC) is implicated in depression. The hypothesis investigated was whether the OFC sensitivity to reward and nonreward is related to the severity of depressive symptoms. METHODS: Activations in the monetary incentive delay task were measured in the IMAGEN cohort at ages 14 years (n = 1877) and 19 years (n = 1140) with a longitudinal design. Clinically relevant subgroups were compared at ages 19 (high-severity group: n = 116; low-severity group: n = 206) and 14. RESULTS: The medial OFC exhibited graded activation increases to reward, and the lateral OFC had graded activation increases to nonreward. In this general population, the medial and lateral OFC activations were associated with concurrent depressive symptoms at both ages 14 and 19 years. In a stratified high-severity depressive symptom group versus control group comparison, the lateral OFC showed greater sensitivity for the magnitudes of activations related to nonreward in the high-severity group at age 19 (p = .027), and the medial OFC showed decreased sensitivity to the reward magnitudes in the high-severity group at both ages 14 (p = .002) and 19 (p = .002). In a longitudinal design, there was greater sensitivity to nonreward of the lateral OFC at age 14 for those who exhibited high depressive symptom severity later at age 19 (p = .003). CONCLUSIONS: Activations in the lateral OFC relate to sensitivity to not winning, were associated with high depressive symptom scores, and at age 14 predicted the depressive symptoms at ages 16 and 19. Activations in the medial OFC were related to sensitivity to winning, and reduced reward sensitivity was associated with concurrent high depressive symptom scores.}, language = {en} } @article{XieJiaRollsetal.2021, author = {Xie, Chao and Jia, Tianye and Rolls, Edmund T. and Robbins, Trevor W. and Sahakian, Barbara J. and Zhang, Jie and Liu, Zhaowen and Cheng, Wei and Luo, Qiang and Zac Lo, Chun-Yi and Schumann, Gunter and Feng, Jianfeng and Wang, He and Banaschewski, Tobias and Barker, Gareth J. and Bokde, Arun L.W. and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivi{\`e}res, Sylvane and Flor, Herta and Grigis, Antoine and Garavan, Hugh and Gowland, Penny and Heinz, Andreas and Hohmann, Sarah and Ittermann, Bernd and Martinot, Jean-Luc and Paill{\`e}re Martinot, Marie-Laure and Nees, Frauke and Papadopoulos Orfanos, Dimitri and Paus, Tom{\´a}š and Poustka, Luise and Fr{\"o}hner, Juliane H. and Smolka, Michael N. and Walter, Henrik and Whelan, Robert}, title = {Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms}, series = {Biological Psychiatry: Cognitive Neuroscience and Neuroimaging}, volume = {6}, journal = {Biological Psychiatry: Cognitive Neuroscience and Neuroimaging}, number = {3}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {2451-9022}, doi = {10.1016/j.bpsc.2020.08.017}, pages = {259 -- 269}, year = {2021}, abstract = {BACKGROUND: The orbitofrontal cortex (OFC) is implicated in depression. The hypothesis investigated was whether the OFC sensitivity to reward and nonreward is related to the severity of depressive symptoms. METHODS: Activations in the monetary incentive delay task were measured in the IMAGEN cohort at ages 14 years (n = 1877) and 19 years (n = 1140) with a longitudinal design. Clinically relevant subgroups were compared at ages 19 (high-severity group: n = 116; low-severity group: n = 206) and 14. RESULTS: The medial OFC exhibited graded activation increases to reward, and the lateral OFC had graded activation increases to nonreward. In this general population, the medial and lateral OFC activations were associated with concurrent depressive symptoms at both ages 14 and 19 years. In a stratified high-severity depressive symptom group versus control group comparison, the lateral OFC showed greater sensitivity for the magnitudes of activations related to nonreward in the high-severity group at age 19 (p = .027), and the medial OFC showed decreased sensitivity to the reward magnitudes in the high-severity group at both ages 14 (p = .002) and 19 (p = .002). In a longitudinal design, there was greater sensitivity to nonreward of the lateral OFC at age 14 for those who exhibited high depressive symptom severity later at age 19 (p = .003). CONCLUSIONS: Activations in the lateral OFC relate to sensitivity to not winning, were associated with high depressive symptom scores, and at age 14 predicted the depressive symptoms at ages 16 and 19. Activations in the medial OFC were related to sensitivity to winning, and reduced reward sensitivity was associated with concurrent high depressive symptom scores.}, language = {en} }