@article{MargoldJansenGurinovetal.2016, author = {Margold, Martin and Jansen, John D. and Gurinov, Artem L. and Codilean, Alexandru T. and Fink, David and Preusser, Frank and Reznichenko, Natalya V. and Mifsud, Charles}, title = {Extensive glaciation in Transbaikalia, Siberia, at the Last Glacial Maximum}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {132}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2015.11.018}, pages = {161 -- 174}, year = {2016}, abstract = {Successively smaller glacial extents have been proposed for continental Eurasia during the stadials of the last glacial period leading up to the Last Glacial Maximum (LGM). At the same time the large mountainous region east of Lake Baikal, Transbaikalia, has remained unexplored in terms of glacial chronology despite clear geomorphological evidence of substantial past glaciations. We have applied cosmogenic Be-10 exposure dating and optically stimulated luminescence to establish the first quantitative glacial chronology for this region. Based on eighteen exposure ages from five moraine complexes, we propose that large mountain ice fields existed in the Kodar and Udokan mountains during Oxygen Isotope Stage 2, commensurate with the global LGM. These ice fields fed valley glaciers (>100 km in length) reaching down to the Chara Depression between the Kodar and Udokan mountains and to the valley of the Vitim River northwest of the Kodar Mountains. Two of the investigated moraines date to the Late Glacial, but indications of incomplete exposure among some of the sampled boulders obscure the specific details of the post-LGM glacial history. In addition to the LGM ice fields in the highest mountains of Transbaikalia, we report geomorphological evidence of a much more extensive, ice-cap type glaciation at a time that is yet to be firmly resolved. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{RosenwinkelLandgrafSchwanghartetal.2017, author = {Rosenwinkel, Swenja and Landgraf, Angela and Schwanghart, Wolfgang and Volkmer, Friedrich and Dzhumabaeva, Atyrgul and Merchel, Silke and Rugel, Georg and Preusser, Frank and Korup, Oliver}, title = {Late Pleistocene outburst floods from Issyk Kul, Kyrgyzstan?}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {42}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4109}, pages = {1535 -- 1548}, year = {2017}, language = {en} } @article{ScherlerBookhagenWulfetal.2015, author = {Scherler, Dirk and Bookhagen, Bodo and Wulf, Hendrik and Preusser, Frank and Strecker, Manfred}, title = {Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India}, series = {Earth \& planetary science letters}, volume = {428}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2015.06.034}, pages = {255 -- 266}, year = {2015}, abstract = {The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and Be-10-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of similar to 2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{PatyniakLandgrafDzhumabaevaetal.2017, author = {Patyniak, Magda and Landgraf, Angela and Dzhumabaeva, Atyrgul and Abdrakhmatov, Kanatbek E. and Rosenwinkel, Swenja and Korup, Oliver and Preusser, Frank and Fohlmeister, Jens Bernd and Arrowsmith, J. Ramon and Strecker, Manfred}, title = {Paleoseismic Record of Three Holocene Earthquakes Rupturing the Issyk-Ata Fault near Bishkek, North Kyrgyzstan}, series = {Bulletin of the Seismological Society of America}, volume = {107}, journal = {Bulletin of the Seismological Society of America}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120170083}, pages = {2721 -- 2737}, year = {2017}, abstract = {The northern edge of the western central Tien Shan range is bounded by the Issyk-Ata fault situated south of Bishkek, the capital of Kyrgyzstan. Contraction in this thick-skinned orogen occurs with low-strain accumulation and long earthquake recurrence intervals. In the nineteenth to twentieth centuries, a sequence of large earthquakes with magnitudes between 6.9 and 8 affected the northern Tien Shan but left nearly the entire extent of the Issyk-Ata fault unruptured. Here, the only known historic earthquake ruptured in A.D. 1885 (M6.9) along the western end of the Issyk-Ata fault. Because earthquakes in low-strain regions often tend to cluster in time and may promote failure along nearby structures, the earthquake history of the northern Tien Shan represents an exceptional structural setting for studying fault behavior affected by an intraplate earthquake sequence. We present a paleoseismological study from one site (Belek) along the Issyk-Ata fault located east of the A.D. 1885 epicentral area. Our analysis combines a range of tools, including photogrammetry, differential Global Positioning System, 3D visualization, and age modeling with different dating methods (infrared stimulated luminescence, radiocarbon, U-series) to improve the reliability of an event chronology for the trench stratigraphy and fault geometry. We were able to distinguish three different surfacerupturing paleoearthquakes; these affected the area before 10.5 +/- 1.1 cal ka B.P., at similar to 5.6 +/- 1.0 cal ka B.P., and at similar to 630 +/- 100 cal B.P., respectively. Associated paleomagnitudes for the last two earthquakes range between M6.7 and 7.4, with a cumulative slip rate of 0.7 +/- 0.32 mm/yr. We did not find evidence for the A.D. 1885 event at Belek. Our study yielded two main overall results: first, it extends the regional historic and paleoseismic record; second, the documented rupture events along the Issyk-Ata fault suggest that this fault was not affected in its entirety; instead, these events indicate segmented rupture behavior.}, language = {en} }