@article{LeQuangPhuongHosseiniKohetal.2019, author = {Le Quang Phuong, and Hosseini, Seyed Mehrdad and Koh, Chang Woo and Woo, Han Young and Shoaee, Safa}, title = {Measuring Competing Recombination Losses in a Significantly Reduced Langevin System by Steady-State Photoinduced Absorption and Photocurrent Spectroscopy}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {123}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {45}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.9b08901}, pages = {27417 -- 27422}, year = {2019}, abstract = {Understanding and disentangling photophysical properties of long-lived photoexcitations in bulk heterojunction (BHJ) solar cells, which contribute mostly to photocurrent, provide essential guidelines to their improvement. However, to construct improved physical models, their rational design relies on reliable measurement techniques for charge recombination. Here, we combine photocurrent and photoinduced absorption spectroscopy (PCPIA) to directly probe the free carrier concentration and investigate loss mechanisms of long-lived excitations in nearly 10\% efficient PPDT2FBT/PC70BM BHJ solar cells under steady-state operational conditions. From the PCPIA data obtained under open- circuit and short-circuit conditions, the absorption cross section and the concentration of photoexcitations are obtained. This material system exhibits an exceptionally low bimolecular recombination rate, about 300 times smaller than the diffusion-controlled electron and hole encounter rate. Furthermore, we observe that the fill factor is limited by losses originating from long-lived photoexcitations undergoing dispersive bimolecular recombination.}, language = {en} } @article{PerdigonToroLeQuangPhuongElleretal.2022, author = {Perdigon-Toro, Lorena and Le Quang Phuong, and Eller, Fabian and Freychet, Guillaume and Saglamkaya, Elifnaz and Khan, Jafar and Wei, Qingya and Zeiske, Stefan and Kroh, Daniel and Wedler, Stefan and Koehler, Anna and Armin, Ardalan and Laquai, Frederic and Herzig, Eva M. and Zou, Yingping and Shoaee, Safa and Neher, Dieter}, title = {Understanding the role of order in Y-series non-fullerene solar cells to realize high open-circuit voltages}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202103422}, pages = {13}, year = {2022}, abstract = {Non-fullerene acceptors (NFAs) as used in state-of-the-art organic solar cells feature highly crystalline layers that go along with low energetic disorder. Here, the crucial role of energetic disorder in blends of the donor polymer PM6 with two Y-series NFAs, Y6, and N4 is studied. By performing temperature-dependent charge transport and recombination studies, a consistent picture of the shape of the density of state distributions for free charges in the two blends is developed, allowing an analytical description of the dependence of the open-circuit voltage V-OC on temperature and illumination intensity. Disorder is found to influence the value of the V-OC at room temperature, but also its progression with temperature. Here, the PM6:Y6 blend benefits substantially from its narrower state distributions. The analysis also shows that the energy of the equilibrated free charge population is well below the energy of the NFA singlet excitons for both blends and possibly below the energy of the populated charge transfer manifold, indicating a down-hill driving force for free charge formation. It is concluded that energetic disorder of charge-separated states has to be considered in the analysis of the photovoltaic properties, even for the more ordered PM6:Y6 blend.}, language = {en} } @article{PerdigonToroLeQuangPhuongZeiskeetal.2021, author = {Perdig{\´o}n-Toro, Lorena and Le Quang Phuong, and Zeiske, Stefan and Vandewal, Koen and Armin, Ardalan and Shoaee, Safa and Neher, Dieter}, title = {Excitons dominate the emission from PM6}, series = {ACS energy letters / American Chemical Society}, volume = {6}, journal = {ACS energy letters / American Chemical Society}, number = {2}, publisher = {American Chemical Society}, address = {Washington}, issn = {2380-8195}, doi = {10.1021/acsenergylett.0c02572}, pages = {557 -- 564}, year = {2021}, abstract = {Non-fullerene acceptors (NFAs) are far more emissive than their fullerene-based counterparts. Here, we study the spectral properties of photocurrent generation and recombination of the blend of the donor polymer PM6 with the NFA Y6. We find that the radiative recombination of free charges is almost entirely due to the re-occupation and decay of Y6 singlet excitons, but that this pathway contributes less than 1\% to the total recombination. As such, the open-circuit voltage of the PM6:Y6 blend is determined by the energetics and kinetics of the charge-transfer (CT) state. Moreover, we find that no information on the energetics of the CT state manifold can be gained from the low-energy tail of the photovoltaic external quantum efficiency spectrum, which is dominated by the excitation spectrum of the Y6 exciton. We, finally, estimate the charge-separated state to lie only 120 meV below the Y6 singlet exciton energy, meaning that this blend indeed represents a high-efficiency system with a low energetic offset.}, language = {en} }