@article{SchirrmeisterBobrovRaschkeetal.2018, author = {Schirrmeister, Lutz and Bobrov, Anatoly and Raschke, Elena and Herzschuh, Ulrike and Strauss, Jens and Pestryakova, Luidmila Agafyevna and Wetterich, Sebastian}, title = {Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands}, series = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, volume = {50}, journal = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, number = {1}, publisher = {Institute of Arctic and Alpine Research, University of Colorado}, address = {Boulder}, issn = {1523-0430}, doi = {10.1080/15230430.2018.1462595}, pages = {18}, year = {2018}, abstract = {Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents, and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 +/- 30 and 1676 +/- 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions because of rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 +/- 33 and 1632 +/- 32 years BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture.}, language = {en} } @article{PestryakovaHerzschuhGorodnichevetal.2018, author = {Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike and Gorodnichev, Ruslan and Wetterich, Sebastian}, title = {The sensitivity of diatom taxa from Yakutian lakes (north-eastern Siberia) to electrical conductivity and other environmental variables}, series = {Polar research : a Norwegian journal of Polar research}, volume = {37}, journal = {Polar research : a Norwegian journal of Polar research}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0800-0395}, doi = {10.1080/17518369.2018.1485625}, pages = {16}, year = {2018}, abstract = {Relative abundances of 157 diatom taxa from Yakutian lake surface-sediments were investigated for their potential to indicate certain environmental conditions. Data from 206 sites from Arctic, sub-Arctic and boreal environments were included. Redundancy analyses were performed to assess the explanatory power of mean July temperature (T-July), conductivity, pH, dissolved silica concentration, phosphate concentration, lake depth and vegetation type on diatom species composition. Boosted regression tree analyses were performed to infer the most relevant environmental variables for abundances of individual taxa and weighted average regression was applied to infer their respective optimum and tolerance. Electrical conductivity was best indicated by diatom taxa. In contrast, only few taxa were indicative of Si and water depth. Few taxa were related to specific pH values. Although T-July, explained the highest proportion of variance in the diatom spectra and was, after conductivity, the second-most selected splitting variable, we a priori decided not to present indicator taxa because of the poorly understood relationship between diatom occurrences and T-July. In total, 92 diatom taxa were reliable indicators of a certain vegetation type or a combination of several types. The high numbers of indicative species for open vegetation sites and for forested sites suggest that the principal turnover is the transition from forest-tundra to northern taiga. Overall, our results reveal that preference ranges of diatom taxa for environmental variables are mostly broad, and the use of indicator taxa for the purposes of environmental reconstruction or environmental monitoring is therefore restricted to marked rather than subtle environmental transitions.}, language = {en} } @article{BiskabornNazarovaPestryakovaetal.2019, author = {Biskaborn, Boris and Nazarova, Larisa B. and Pestryakova, Luidmila Agafyevna and Syrykh, Liudmila and Funck, Kim and Meyer, Hanno and Chapligin, Bernhard and Vyse, Stuart Andrew and Gorodnichev, Ruslan and Zakharov, Evgenii and Wang, Rong and Schwamborn, Georg and Bailey, Hannah L. and Diekmann, Bernhard}, title = {Spatial distribution of environmental indicators in surface sediments of Lake Bolshoe Toko, Yakutia, Russia}, series = {Biogeosciences}, volume = {16}, journal = {Biogeosciences}, number = {20}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-16-4023-2019}, pages = {4023 -- 4049}, year = {2019}, abstract = {Rapidly changing climate in the Northern Hemisphere and associated socio-economic impacts require reliable understanding of lake systems as important freshwater resources and sensitive sentinels of environmental change. To better understand time-series data in lake sediment cores, it is necessary to gain information on within-lake spatial variabilities of environmental indicator data. Therefore, we retrieved a set of 38 samples from the sediment surface along spatial habitat gradients in the boreal, deep, and yet pristine Lake Bolshoe Toko in southern Yakutia, Russia. Our methods comprise laboratory analyses of the sediments for multiple proxy parameters, including diatom and chironomid taxonomy, oxygen isotopes from diatom silica, grain-size distributions, elemental compositions (XRF), organic carbon content, and mineralogy (XRD). We analysed the lake water for cations, anions, and isotopes. Our results show that the diatom assemblages are strongly influenced by water depth and dominated by planktonic species, i.e. Pliocaenicus bolshetokoensis. Species richness and diversity are higher in the northern part of the lake basin, associated with the availability of benthic, i.e. periphytic, niches in shallower waters. delta O-18(diatom) values are higher in the deeper south-western part of the lake, probably related to water temperature differences. The highest amount of the chironomid taxa underrepresented in the training set used for palaeoclimate inference was found close to the Utuk River and at southern littoral and profundal sites. Abiotic sediment components are not symmetrically distributed in the lake basin, but vary along restricted areas of differential environmental forcing. Grain size and organic matter are mainly controlled by both river input and water depth. Mineral (XRD) data distributions are influenced by the methamorphic lithology of the Stanovoy mountain range, while elements (XRF) are intermingled due to catchment and diagenetic differences. We conclude that the lake represents a valuable archive for multiproxy environmental reconstruction based on diatoms (including oxygen isotopes), chironomids, and sediment-geochemical parameters. Our analyses suggest multiple coring locations preferably at intermediate depth in the northern basin and the deep part in the central basin, to account for representative bioindicator distributions and higher temporal resolution, respectively.}, language = {en} } @article{KruseEppWieczoreketal.2018, author = {Kruse, Stefan and Epp, Laura Saskia and Wieczorek, Mareike and Pestryakova, Luidmila Agafyevna and Stoof-Leichsenring, Kathleen Rosemarie and Herzschuh, Ulrike}, title = {High gene flow and complex treeline dynamics of Larix Mill. stands on the Taymyr Peninsula (north-central Siberia) revealed by nuclear microsatellites}, series = {Tree Genetics \& Genomes}, volume = {14}, journal = {Tree Genetics \& Genomes}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1614-2942}, doi = {10.1007/s11295-018-1235-3}, pages = {14}, year = {2018}, abstract = {Arctic treelines are facing a strong temperature increase as a result of recent global warming, causing possible changes in forest extent, which will alter vegetation-climate feedbacks. However, the mode and strength of the response is rather unclear, as potential changes are happening in areas that are very remote and difficult to access, and empirical data are still largely lacking. Here, we assessed the current population structure and genetic differentiation of Larix Mill. tree stands within the northernmost latitudinal treeline reaching ~ 72° N in the southern lowlands of the Taymyr Peninsula (~ 100° E). We sampled 743 individuals belonging to different height classes (seedlings, saplings, trees) at 11 locations along a gradient from 'single tree' tundra over 'forest line' to 'dense forest' stands and conducted investigations applying eight highly polymorphic nuclear microsatellites. Results suggest a high diversity within sub-populations (HE = 0.826-0.893), coupled, however, with heterozygote deficits in all sub-populations, but pronounced in 'forest line' stands. Overall, genetic differentiation of sub-populations is low (FST = 0.005), indicating a region-wide high gene flow, although 'forest line' stands harbour few rare and private alleles, likely indicating greater local reproduction. 'Single tree' stands, located beyond the northern forest line, are currently not involved in treeline expansion, but show signs of a long-term refuge, namely asexual reproduction and change of growth-form from erect to creeping growth, possibly having persisted for thousands of years. The lack of differentiation between the sub-populations points to a sufficiently high dispersal potential, and thus a rapid northward migration of the Siberian arctic treeline under recent global warming seems potentially unconstrained, but observations show it to be unexpectedly slow.}, language = {en} } @article{EppKruseKathetal.2018, author = {Epp, Laura Saskia and Kruse, Stefan and Kath, Nadja J. and Stoof-Leichsenring, Kathleen Rosemarie and Tiedemann, Ralph and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-35550-w}, pages = {9}, year = {2018}, abstract = {Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology.}, language = {en} } @article{ZibulskiWesenerWilkesetal.2017, author = {Zibulski, Romy and Wesener, Felix and Wilkes, Heinz and Plessen, Birgit and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {C / N ratio, stable isotope (delta C-13, delta N-15), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-1617-2017}, pages = {1617 -- 1630}, year = {2017}, abstract = {Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5\% (median D 27.8 \%). The delta N-15 values range between 6.6 and C 1.7\%(median D 2.2 \%). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.}, language = {en} } @article{WieczorekKolmogorovKruseetal.2017, author = {Wieczorek, Mareike and Kolmogorov, Alexei and Kruse, Stefan and Jacobsen, Inga and Nitze, Ingmar and Nikolaev, Anatoly N. and Heinrich, Ingo and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Disturbance-effects on treeline larch-stands in the lower Kolyma River area (NE Siberia)}, series = {Silva Fennica : a quarterly journal for forest science}, volume = {51}, journal = {Silva Fennica : a quarterly journal for forest science}, number = {3}, publisher = {The Finnish Society of Forest Science}, address = {Helsinki}, issn = {0037-5330}, doi = {10.14214/sf.1666}, pages = {20}, year = {2017}, abstract = {Tree stands in the boreal treeline ecotone are, in addition to climate change, impacted by disturbances such as fire, water-related disturbances and logging. We aim to understand how these disturbances affect growth, age structure, and spatial patterns of larch stands in the north-eastern Siberian treeline ecotone (lower Kolyma River region), an insufficiently researched region. Stand structure of Larix cajanderi Mayr was studied at seven sites impacted by disturbances. Maximum tree age ranged from 44 to 300 years. Young to medium-aged stands had, independent of disturbance type, the highest stand densities with over 4000 larch trees per ha. These sites also had the highest growth rates for tree height and stem diameter. Overall lowest stand densities were found in a polygonal field at the northern end of the study area, with larches growing in distinct " tree islands". At all sites, saplings are significantly clustered. Differences in fire severity led to contrasting stand structures with respect to tree, recruit, and overall stand densities. While a low severity fire resulted in low-density stands with high proportions of small and young larches, high severity fires resulted in high-density stands with high proportions of big trees. At waterdisturbed sites, stand structure varied between waterlogged and drained sites and latitude. These mixed effects of climate and disturbance make it difficult to predict future stand characteristics and the treeline position.}, language = {en} } @article{KruseKolmogorovPestryakovaetal.2020, author = {Kruse, Stefan and Kolmogorov, Aleksey I. and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia}, series = {Ecology and evolution}, volume = {10}, journal = {Ecology and evolution}, number = {18}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.6660}, pages = {10017 -- 10030}, year = {2020}, abstract = {The occurrence of refugia beyond the arctic treeline and genetic adaptation therein play a crucial role of largely unknown effect size. While refugia have potential for rapidly colonizing the tundra under global warming, the taxa may be maladapted to the new environmental conditions. Understanding the genetic composition and age of refugia is thus crucial for predicting any migration response. Here, we genotype 194 larch individuals from an similar to 1.8 km(2)area in northcentral Siberia on the southern Taimyr Peninsula by applying an assay of 16 nuclear microsatellite markers. For estimating the age of clonal individuals, we counted tree rings at sections along branches to establish a lateral growth rate that was then combined with geographic distance. Findings reveal that the predominant reproduction type is clonal (58.76\%) by short distance spreading of ramets. One outlier of clones 1 km apart could have been dispersed by reindeer. In clonal groups and within individuals, we find that somatic mutations accumulate with geographic distance. Clonal groups of two or more individuals are observed. Clonal age estimates regularly suggest individuals as old as 2,200 years, which coincides with a major environmental change that forced a treeline retreat in the region. We conclude that individuals with clonal growth mode were naturally selected as it lowers the likely risk of extinction under a harsh environment. We discuss this legacy from the past that might now be a maladaptation and hinder expansion under currently strongly increasing temperatures.}, language = {en} } @misc{SubettoNazarovaPestryakovaetal.2017, author = {Subetto, D. A. and Nazarova, Larisa B. and Pestryakova, Luidmila Agafyevna and Syrykh, Liudmila and Andronikov, A. V. and Biskaborn, Boris and Diekmann, Bernhard and Kuznetsov, D. D. and Sapelko, T. V. and Grekov, I. M.}, title = {Paleolimnological studies in Russian northern Eurasia}, series = {Contemporary Problems of Ecology}, volume = {10}, journal = {Contemporary Problems of Ecology}, publisher = {Pleiades Publ.}, address = {New York}, issn = {1995-4255}, doi = {10.1134/S1995425517040102}, pages = {327 -- 335}, year = {2017}, abstract = {This article presents a review of the current data on the level of paleolimnological knowledge about lakes in the Russian part of the northern Eurasia. The results of investigation of the northwestern European part of Russia as the best paleolimnologically studied sector of the Russian north is presented in detail. The conditions of lacustrine sedimentation at the boundary between the Late Pleistocene and Holocene and the role of different external factors in formation of their chemical composition, including active volcanic activity and possible large meteorite impacts, are also discussed. The results of major paleoclimatic and paleoecological reconstructions in northern Siberia are presented. Particular attention is given to the databases of abiotic and biotic parameters of lake ecosystems as an important basis for quantitative reconstructions of climatic and ecological changes in the Late Pleistocene and Holocene. Keywords: paleolimnology, lakes, bottom sediments, northern.}, language = {en} } @article{GengAndreevKruseetal.2022, author = {Geng, Rongwei and Andreev, Andrei and Kruse, Stefan and Heim, Birgit and van Geffen, Femke and Pestryakova, Luidmila and Zakharov, Evgenii and Troeva, Elena I. and Shevtsova, Iuliia and Li, Furong and Zhao, Yan and Herzschuh, Ulrike}, title = {Modern pollen assemblages from lake sediments and soil in East Siberia and relative pollen productivity estimates for Major Taxa}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2022.837857}, pages = {17}, year = {2022}, abstract = {Modern pollen-vegetation-climate relationships underpin palaeovegetation and palaeoclimate reconstructions from fossil pollen records. East Siberia is an ideal area for investigating the relationships between modern pollen assemblages and near natural vegetation under cold continental climate conditions. Reliable pollen-based quantitative vegetation and climate reconstructions are still scarce due to the limited number of modern pollen datasets. Furthermore, differences in pollen representation of samples from lake sediments and soils are not well understood. Here, we present a new pollen dataset of 48 moss/soil and 24 lake surface-sediment samples collected in Chukotka and central Yakutia in East Siberia. The pollen-vegetation-climate relationships were investigated by ordination analyses. Generally, tundra and taiga vegetation types can be well distinguished in the surface pollen assemblages. Moss/soil and lake samples contain generally similar pollen assemblages as revealed by a Procrustes comparison with some exceptions. Overall, modern pollen assemblages reflect the temperature and precipitation gradients in the study areas as revealed by constrained ordination analysis. We estimate the relative pollen productivity (RPP) of major taxa and the relevant source area of pollen (RSAP) for moss/soil samples from Chukotka and central Yakutia using Extended R-Value (ERV) analysis. The RSAP of the tundra-forest transition area in Chukotka and taiga area in central Yakutia are ca. 1300 and 360 m, respectively. For Chukotka, RPPs relative to both Poaceae and Ericaceae were estimated while RPPs for central Yakutia were relative only to Ericaceae. Relative to Ericaceae (reference taxon, RPP = 1), Larix, Betula, Picea, and Pinus are overrepresented while Alnus, Cyperaceae, Poaceae, and Salix are underrepresented in the pollen spectra. Our estimates are in general agreement with previously published values and provide the basis for reliable quantitative reconstructions of East Siberian vegetation.}, language = {en} }