@misc{BreuerNowakIvakovetal.2017, author = {Breuer, David and Nowak, Jacqueline and Ivakov, Alexander and Somssich, Marc and Persson, Staffan and Nikoloski, Zoran}, title = {System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {114}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1712371114}, pages = {E6732 -- E6732}, year = {2017}, language = {en} } @article{ChenPerssonGrebeetal.2018, author = {Chen, Hsiang-Wen and Persson, Staffan and Grebe, Markus and McFarlane, Heather E.}, title = {Cellulose synthesis during cell plate assembly}, series = {Physiologia plantarum}, volume = {164}, journal = {Physiologia plantarum}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0031-9317}, doi = {10.1111/ppl.12703}, pages = {17 -- 26}, year = {2018}, abstract = {The plant cell wall surrounds and protects the cells. To divide, plant cells must synthesize a new cell wall to separate the two daughter cells. The cell plate is a transient polysaccharide-based compartment that grows between daughter cells and gives rise to the new cell wall. Cellulose constitutes a key component of the cell wall, and mutants with defects in cellulose synthesis commonly share phenotypes with cytokinesis-defective mutants. However, despite the importance of cellulose in the cell plate and the daughter cell wall, many open questions remain regarding the timing and regulation of cellulose synthesis during cell division. These questions represent a critical gap in our knowledge of cell plate assembly, cell division and growth. Here, we review what is known about cellulose synthesis at the cell plate and in the newly formed cross-wall and pose key questions about the molecular mechanisms that govern these processes. We further provide an outlook discussing outstanding questions and possible future directions for this field of research.}, language = {en} } @article{YuWuNowaketal.2019, author = {Yu, Yanjun and Wu, Shenjie and Nowak, Jacqueline and Wang, Guangda and Han, Libo and Feng, Zhidi and Mendrinna, Amelie and Ma, Yinping and Wang, Huan and Zhang, Xiaxia and Tian, Juan and Dong, Li and Nikoloski, Zoran and Persson, Staffan and Kong, Zhaosheng}, title = {Live-cell imaging of the cytoskeleton in elongating cotton fibres}, series = {Nature plants}, volume = {5}, journal = {Nature plants}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {2055-026X}, doi = {10.1038/s41477-019-0418-8}, pages = {498 -- 504}, year = {2019}, abstract = {Cotton (Gossypium hirsutum) fibres consist of single cells that grow in a highly polarized manner, assumed to be controlled by the cytoskeleton(1-3). However, how the cytoskeletal organization and dynamics underpin fibre development remains unexplored. Moreover, it is unclear whether cotton fibres expand via tip growth or diffuse growth(2-4). We generated stable transgenic cotton plants expressing fluorescent markers of the actin and microtubule cytoskeleton. Live-cell imaging revealed that elongating cotton fibres assemble a cortical filamentous actin network that extends along the cell axis to finally form actin strands with closed loops in the tapered fibre tip. Analyses of F-actin network properties indicate that cotton fibres have a unique actin organization that blends features of both diffuse and tip growth modes. Interestingly, typical actin organization and endosomal vesicle aggregation found in tip-growing cell apices were not observed in fibre tips. Instead, endomembrane compartments were evenly distributed along the elongating fibre cells and moved bi-directionally along the fibre shank to the fibre tip. Moreover, plus-end tracked microtubules transversely encircled elongating fibre shanks, reminiscent of diffusely growing cells. Collectively, our findings indicate that cotton fibres elongate via a unique tip-biased diffuse growth mode.}, language = {en} } @article{RuprechtMutwilSaxeetal.2011, author = {Ruprecht, Colin and Mutwil, Marek and Saxe, Friederike and Eder, Michaela and Nikoloski, Zoran and Persson, Staffan}, title = {Large-scale co-expression approach to dissect secondary cell wall formation across plant species}, series = {Frontiers in plant science}, volume = {2}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2011.00023}, pages = {13}, year = {2011}, abstract = {Plant cell walls are complex composites largely consisting of carbohydrate-based polymers, and are generally divided into primary and secondary walls based on content and characteristics. Cellulose microfibrils constitute a major component of both primary and secondary cell walls and are synthesized at the plasma membrane by cellulose synthase (CESA) complexes. Several studies in Arabidopsis have demonstrated the power of co-expression analyses to identify new genes associated with secondary wall cellulose biosynthesis. However, across-species comparative co-expression analyses remain largely unexplored. Here, we compared co-expressed gene vicinity networks of primary and secondary wall CESAsin Arabidopsis, barley, rice, poplar, soybean, Medicago, and wheat, and identified gene families that are consistently co-regulated with cellulose biosynthesis. In addition to the expected polysaccharide acting enzymes, we also found many gene families associated with cytoskeleton, signaling, transcriptional regulation, oxidation, and protein degradation. Based on these analyses, we selected and biochemically analyzed T-DNA insertion lines corresponding to approximately twenty genes from gene families that re-occur in the co-expressed gene vicinity networks of secondary wall CESAs across the seven species. We developed a statistical pipeline using principal component analysis and optimal clustering based on silhouette width to analyze sugar profiles. One of the mutants, corresponding to a pinoresinol reductase gene, displayed disturbed xylem morphology and held lower levels of lignin molecules. We propose that this type of large-scale co-expression approach, coupled with statistical analysis of the cell wall contents, will be useful to facilitate rapid knowledge transfer across plant species.}, language = {en} } @article{BreuerNowakIvakovetal.2017, author = {Breuer, David and Nowak, Jacqueline and Ivakov, Alexander and Somssich, Marc and Persson, Staffan and Nikoloski, Zoran}, title = {System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {114}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1706711114}, pages = {E5741 -- E5749}, year = {2017}, abstract = {The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms.}, language = {en} } @article{RuprechtLohausVannesteetal.2017, author = {Ruprecht, Colin and Lohaus, Rolf and Vanneste, Kevin and Mutwil, Marek and Nikoloski, Zoran and Van de Peer, Yves and Persson, Staffan}, title = {Revisiting ancestral polyploidy in plants}, series = {Science Advances}, volume = {3}, journal = {Science Advances}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.1603195}, pages = {6}, year = {2017}, abstract = {Whole-genome duplications (WGDs) or polyploidy events have been studied extensively in plants. In a now widely cited paper, Jiao et al. presented evidence for two ancient, ancestral plant WGDs predating the origin of flowering and seed plants, respectively. This finding was based primarily on a bimodal age distribution of gene duplication events obtained from molecular dating of almost 800 phylogenetic gene trees. We reanalyzed the phylogenomic data of Jiao et al. and found that the strong bimodality of the age distribution may be the result of technical and methodological issues and may hence not be a "true" signal of two WGD events. By using a state-of-the-art molecular dating algorithm, we demonstrate that the reported bimodal age distribution is not robust and should be interpreted with caution. Thus, there exists little evidence for two ancient WGDs in plants from phylogenomic dating.}, language = {en} } @article{NowakGennermannPerssonetal.2020, author = {Nowak, Jacqueline and Gennermann, Kristin and Persson, Staffan and Nikoloski, Zoran}, title = {CytoSeg 2.0}, series = {Bioinformatics}, volume = {36}, journal = {Bioinformatics}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btaa035}, pages = {2950 -- 2951}, year = {2020}, abstract = {Motivation: Actin filaments (AFs) are dynamic structures that substantially change their organization over time. The dynamic behavior and the relatively low signal-to-noise ratio during live-cell imaging have rendered the quantification of the actin organization a difficult task. Results: We developed an automated image-based framework that extracts AFs from fluorescence microscopy images and represents them as networks, which are automatically analyzed to identify and compare biologically relevant features. Although the source code is freely available, we have now implemented the framework into a graphical user interface that can be installed as a Fiji plugin, thus enabling easy access by the research community.}, language = {en} } @article{SongLiNowaketal.2019, author = {Song, Yu and Li, Gang and Nowak, Jacqueline and Zhang, Xiaoqing and Xu, Dongbei and Yang, Xiujuan and Huang, Guoqiang and Liang, Wanqi and Yang, Litao and Wang, Canhua and Bulone, Vincent and Nikoloski, Zoran and Hu, Jianping and Persson, Staffan and Zhang, Dabing}, title = {The Rice Actin-Binding Protein RMD Regulates Light-Dependent Shoot Gravitropism}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {181}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.19.00497}, pages = {630 -- 644}, year = {2019}, abstract = {Light and gravity are two key determinants in orientating plant stems for proper growth and development. The organization and dynamics of the actin cytoskeleton are essential for cell biology and critically regulated by actin-binding proteins. However, the role of actin cytoskeleton in shoot negative gravitropism remains controversial. In this work, we report that the actin-binding protein Rice Morphology Determinant (RMD) promotes reorganization of the actin cytoskeleton in rice (Oryza sativa) shoots. The changes in actin organization are associated with the ability of the rice shoots to respond to negative gravitropism. Here, light-grown rmd mutant shoots exhibited agravitropic phenotypes. By contrast, etiolated rmd shoots displayed normal negative shoot gravitropism. Furthermore, we show that RMD maintains an actin configuration that promotes statolith mobility in gravisensing endodermal cells, and for proper auxin distribution in light-grown, but not dark-grown, shoots. RMD gene expression is diurnally controlled and directly repressed by the phytochrome-interacting factor-like protein OsPIL16. Consequently, overexpression of OsPIL16 led to gravisensing and actin patterning defects that phenocopied the rmd mutant. Our findings outline a mechanism that links light signaling and gravity perception for straight shoot growth in rice.}, language = {en} } @article{WangTohgeIvakovetal.2015, author = {Wang, Ting and Tohge, Takayuki and Ivakov, Alexander and M{\"u}ller-R{\"o}ber, Bernd and Fernie, Alisdair R. and Mutwil, Marek and Schippers, Jos H. M. and Persson, Staffan}, title = {Salt-Related MYB1 Coordinates Abscisic Acid Biosynthesis and Signaling during Salt Stress in Arabidopsis}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {169}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.15.00962}, pages = {1027 -- +}, year = {2015}, abstract = {Abiotic stresses, such as salinity, cause global yield loss of all major crop plants. Factors and mechanisms that can aid in plant breeding for salt stress tolerance are therefore of great importance for food and feed production. Here, we identified a MYB-like transcription factor, Salt-Related MYB1 (SRM1), that negatively affects Arabidopsis (Arabidopsis thaliana) seed germination under saline conditions by regulating the levels of the stress hormone abscisic acid (ABA). Accordingly, several ABA biosynthesis and signaling genes act directly downstream of SRM1, including SALT TOLERANT1/NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3, RESPONSIVE TO DESICCATION26, and Arabidopsis NAC DOMAIN CONTAINING PROTEIN19. Furthermore, SRM1 impacts vegetative growth and leaf shape. We show that SRM1 is an important transcriptional regulator that directly targets ABA biosynthesis and signaling-related genes and therefore may be regarded as an important regulator of ABA-mediated salt stress tolerance.}, language = {en} } @article{LuWangPerssonetal.2014, author = {Lu, Dandan and Wang, Ting and Persson, Staffan and M{\"u}ller-R{\"o}ber, Bernd and Schippers, Jos H. M.}, title = {Transcriptional control of ROS homeostasis by KUODA1 regulates cell expansion during leaf development}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms4767}, pages = {9}, year = {2014}, abstract = {The final size of an organism, or of single organs within an organism, depends on an intricate coordination of cell proliferation and cell expansion. Although organism size is of fundamental importance, the molecular and genetic mechanisms that control it remain far from understood. Here we identify a transcription factor, KUODA1 (KUA1), which specifically controls cell expansion during leaf development in Arabidopsis thaliana. We show that KUA1 expression is circadian regulated and depends on an intact clock. Furthermore, KUA1 directly represses the expression of a set of genes encoding for peroxidases that control reactive oxygen species (ROS) homeostasis in the apoplast. Disruption of KUA1 results in increased peroxidase activity and smaller leaf cells. Chemical or genetic interference with the ROS balance or peroxidase activity affects cell size in a manner consistent with the identified KUA1 function. Thus, KUA1 modulates leaf cell expansion and final organ size by controlling ROS homeostasis.}, language = {en} } @article{FujikuraElsaesserBreuningeretal.2014, author = {Fujikura, Ushio and Elsaesser, Lore and Breuninger, Holger and Sanchez-Rodriguez, Clara and Ivakov, Alexander and Laux, Thomas and Findlay, Kim and Persson, Staffan and Lenhard, Michael}, title = {Atkinesin-13A modulates cell-wall synthesis and cell expansion in arabidopsis thaliana via the THESEUS1 pathway}, series = {PLoS Genetics : a peer-reviewed, open-access journal}, volume = {10}, journal = {PLoS Genetics : a peer-reviewed, open-access journal}, number = {9}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-7390}, doi = {10.1371/journal.pgen.1004627}, pages = {15}, year = {2014}, abstract = {Growth of plant organs relies on cell proliferation and expansion. While an increasingly detailed picture about the control of cell proliferation is emerging, our knowledge about the control of cell expansion remains more limited. We demonstrate the internal-motor kinesin AtKINESIN-13A (AtKIN13A) limits cell expansion and cell size in Arabidopsis thaliana, ion atkinl3a mutants forming larger petals with larger cells. The homolog, AtKINESIN-13B, also affects cell expansion and double mutants display growth, gametophytic and early embryonic defects, indicating a redundant role of he two genes. AtKIN13A is known to depolymerize microtubules and influence Golgi motility and distribution. Consistent his function, AtKIN13A interacts genetically with ANGUSTIFOLIA, encoding a regulator of Golgi dynamics. Reduced AtIGN13A activity alters cell wall structure as assessed by Fourier-transformed infrared-spectroscopy and triggers signalling he THESEUS1-dependent cell-wall integrity pathway, which in turn promotes the excess cell expansion in the atkinl3a mutant. Thus, our results indicate that the intracellular activity of AtKIN13A regulates cell expansion and wall architecture via THESEUS1, providing a compelling case of interplay between cell wall integrity sensing and expansion.}, language = {en} }