@article{CabezaMuellerPereyraetal.2018, author = {Cabeza, Sandra and M{\"u}ller, Bernd R. and Pereyra, Ricio and Fernandez, Ricardo and Gonzalez-Doncel, Gaspar and Bruno, Giovanni}, title = {Evidence of damage evolution during creep of Al-Mg alloy using synchrotron X-ray refraction}, series = {Journal of applied crystallography}, volume = {51}, journal = {Journal of applied crystallography}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {1600-5767}, doi = {10.1107/S1600576718001449}, pages = {420 -- 427}, year = {2018}, abstract = {In order to provide further evidence of damage mechanisms predicted by the recent solid-state transformation creep (SSTC) model, direct observation of damage accumulation during creep of Al-3.85Mg was made using synchrotron X-ray refraction. X-ray refraction techniques detect the internal specific surface (i.e. surface per unit volume) on a length scale comparable to the specimen size, but with microscopic sensitivity. A significant rise in the internal specific surface with increasing creep time was observed, providing evidence for the creation of a fine grain substructure, as predicted by the SSTC model. This substructure was also observed by scanning electron microscopy.}, language = {en} } @article{delPapaHongnPowelletal.2013, author = {del Papa, C. and Hongn, Fernando D. and Powell, J. and Payrola, P. and Do Campo, M. and Strecker, Manfred and Petrinovic, I. and Schmitt, A. K. and Pereyra, R.}, title = {Middle Eocene-Oligocene broken-foreland evolution in the Andean Calchaqui Valley, NW Argentina: insights from stratigraphic, structural and provenance studies}, series = {BASIN RESEARCH}, volume = {25}, journal = {BASIN RESEARCH}, number = {5}, publisher = {WILEY-BLACKWELL}, address = {HOBOKEN}, issn = {0950-091X}, doi = {10.1111/bre.12018}, pages = {574 -- 593}, year = {2013}, abstract = {Two end-member models have been proposed for the Paleogene Andean foreland: a simple W-E migrating foreland model and a broken-foreland model. We present new stratigraphic, sedimentological and structural data from the Paleogene Quebrada de los Colorados (QLC) Formation, in the Eastern Cordillera, with which to test these two different models. Basin-wide unconformities, growthstrata and changes in provenance indicate deposition of the QLC Formation in a tectonically active basin. Both west- and east-vergent structures, rooted in the basement, controlled the deposition and distribution of the QLC Formation from the Middle Eocene to the Early Miocene. The provenance analysis indicates that the main source areas were basement blocks, like the Paleozoic Oire Eruptive Complex, uplifted during Paleogene shortening, and that delimits the eastern boundary of the present-day intraorogenic Puna plateau. A comparison of the QLC sedimentary basin-fill pattern with those of adjacent Paleogene basins in the Puna plateau and in the Santa Barbara System highlights the presence of discrete depozones. These reflect the early compartmentalization of the foreland, rather than a stepwise advance of the deformation front of a thrust belt. The early Tertiary foreland of the southern central Andes is represented by a ca. 250-km-wide area comprising several deformation zones (Arizaro, Macon, Copalayo and Calchaqui) in which doubly vergent or asymmetric structures, rooted in the basement, were generated. Hence, classical foreland model is difficult to apply in this Paleogene basin; and our data and interpretation agree with a broken-foreland model.}, language = {en} }