@article{WarringtonBeaumontHorikoshietal.2019, author = {Warrington, Nicole and Beaumont, Robin and Horikoshi, Momoko and Day, Felix R. and Helgeland, {\O}yvind and Laurin, Charles and Bacelis, Jonas and Peng, Shouneng and Hao, Ke and Feenstra, Bjarke and Wood, Andrew R. and Mahajan, Anubha and Tyrrell, Jessica and Robertson, Neil R. and Rayner, N. William and Qiao, Zhen and Moen, Gunn-Helen and Vaudel, Marc and Marsit, Carmen and Chen, Jia and Nodzenski, Michael and Schnurr, Theresia M. and Zafarmand, Mohammad Hadi and Bradfield, Jonathan P. and Grarup, Niels and Kooijman, Marjolein N. and Li-Gao, Ruifang and Geller, Frank and Ahluwalia, Tarunveer Singh and Paternoster, Lavinia and Rueedi, Rico and Huikari, Ville and Hottenga, Jouke-Jan and Lyytik{\"a}inen, Leo-Pekka and Cavadino, Alana and Metrustry, Sarah and Cousminer, Diana L. and Wu, Ying and Thiering, Elisabeth Paula and Wang, Carol A. and Have, Christian Theil and Vilor-Tejedor, Natalia and Joshi, Peter K. and Painter, Jodie N. and Ntalla, Ioanna and Myhre, Ronny and Pitk{\"a}nen, Niina and van Leeuwen, Elisabeth M. and Joro, Raimo and Lagou, Vasiliki and Richmond, Rebecca C. and Espinosa, Ana and Barton, Sheila J. and Inskip, Hazel M. and Holloway, John W. and Santa-Marina, Loreto and Estivill, Xavier and Ang, Wei and Marsh, Julie A. and Reichetzeder, Christoph and Marullo, Letizia and Hocher, Berthold and Lunetta, Kathryn L. and Murabito, Joanne M. and Relton, Caroline L. and Kogevinas, Manolis and Chatzi, Leda and Allard, Catherine and Bouchard, Luigi and Hivert, Marie-France and Zhang, Ge and Muglia, Louis J. and Heikkinen, Jani and Morgen, Camilla S. and van Kampen, Antoine H. C. and van Schaik, Barbera D. C. and Mentch, Frank D. and Langenberg, Claudia and Scott, Robert A. and Zhao, Jing Hua and Hemani, Gibran and Ring, Susan M. and Bennett, Amanda J. and Gaulton, Kyle J. and Fernandez-Tajes, Juan and van Zuydam, Natalie R. and Medina-Gomez, Carolina and de Haan, Hugoline G. and Rosendaal, Frits R. and Kutalik, Zolt{\´a}n and Marques-Vidal, Pedro and Das, Shikta and Willemsen, Gonneke and Mbarek, Hamdi and M{\"u}ller-Nurasyid, Martina and Standl, Marie and Appel, Emil V. R. and Fonvig, Cilius Esmann and Trier, Caecilie and van Beijsterveldt, Catharina E. M. and Murcia, Mario and Bustamante, Mariona and Bon{\`a}s-Guarch, S{\´i}lvia and Hougaard, David M. and Mercader, Josep M. and Linneberg, Allan and Schraut, Katharina E. and Lind, Penelope A. and Medland, Sarah Elizabeth and Shields, Beverley M. and Knight, Bridget A. and Chai, Jin-Fang and Panoutsopoulou, Kalliope and Bartels, Meike and S{\´a}nchez, Friman and Stokholm, Jakob and Torrents, David and Vinding, Rebecca K. and Willems, Sara M. and Atalay, Mustafa and Chawes, Bo L. and Kovacs, Peter and Prokopenko, Inga and Tuke, Marcus A. and Yaghootkar, Hanieh and Ruth, Katherine S. and Jones, Samuel E. and Loh, Po-Ru and Murray, Anna and Weedon, Michael N. and T{\"o}njes, Anke and Stumvoll, Michael and Michaelsen, Kim Fleischer and Eloranta, Aino-Maija and Lakka, Timo A. and van Duijn, Cornelia M. and Kiess, Wieland and Koerner, Antje and Niinikoski, Harri and Pahkala, Katja and Raitakari, Olli T. and Jacobsson, Bo and Zeggini, Eleftheria and Dedoussis, George V. and Teo, Yik-Ying and Saw, Seang-Mei and Montgomery, Grant W. and Campbell, Harry and Wilson, James F. and Vrijkotte, Tanja G. M. and Vrijheid, Martine and de Geus, Eco J. C. N. and Hayes, M. Geoffrey and Kadarmideen, Haja N. and Holm, Jens-Christian and Beilin, Lawrence J. and Pennell, Craig E. and Heinrich, Joachim and Adair, Linda S. and Borja, Judith B. and Mohlke, Karen L. and Eriksson, Johan G. and Widen, Elisabeth E. and Hattersley, Andrew T. and Spector, Tim D. and Kaehoenen, Mika and Viikari, Jorma S. and Lehtimaeki, Terho and Boomsma, Dorret I. and Sebert, Sylvain and Vollenweider, Peter and Sorensen, Thorkild I. A. and Bisgaard, Hans and Bonnelykke, Klaus and Murray, Jeffrey C. and Melbye, Mads and Nohr, Ellen A. and Mook-Kanamori, Dennis O. and Rivadeneira, Fernando and Hofman, Albert and Felix, Janine F. and Jaddoe, Vincent W. V. and Hansen, Torben and Pisinger, Charlotta and Vaag, Allan A. and Pedersen, Oluf and Uitterlinden, Andre G. and Jarvelin, Marjo-Riitta and Power, Christine and Hypponen, Elina and Scholtens, Denise M. and Lowe, William L. and Smith, George Davey and Timpson, Nicholas J. and Morris, Andrew P. and Wareham, Nicholas J. and Hakonarson, Hakon and Grant, Struan F. A. and Frayling, Timothy M. and Lawlor, Debbie A. and Njolstad, Pal R. and Johansson, Stefan and Ong, Ken K. and McCarthy, Mark I. and Perry, John R. B. and Evans, David M. and Freathy, Rachel M.}, title = {Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {EGG Consortium}, issn = {1061-4036}, pages = {804 -- +}, year = {2019}, abstract = {Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.}, language = {en} } @article{ZhaoKuhnOyeetal.2014, author = {Zhao, Peng and Kuhn, Daniela and Oye, Volker and Cesca, Simone}, title = {Evidence for tensile faulting deduced from full waveform moment tensor inversion during the stimulation of the Basel enhanced geothermal system}, series = {Geothermics : an international journal of geothermal research and its applications}, volume = {52}, journal = {Geothermics : an international journal of geothermal research and its applications}, publisher = {Elsevier}, address = {Oxford}, issn = {0375-6505}, doi = {10.1016/j.geothermics.2014.01.003}, pages = {74 -- 83}, year = {2014}, abstract = {Our study presents the results of a moment tensor inversion of 19 microseismic events with M-L between 2.0 and 3.4, associated with the stimulation operation of an enhanced geothermal reservoir in Basel, Switzerland, in 2006. We adopt a three-step procedure to retrieve point source solution parameters based on full waveform inversion. The inversion is performed by fitting displacement amplitude spectra and displacement seismograms in the first and second step, respectively, assuming a double couple source model and thus obtaining focal solutions for all 19 events. Our results are in agreement with focal mechanisms from a previous study, which employed P wave first-motion polarities from more than 40 stations, whereas our solutions are achieved using full waveform data recorded by less than 10 surface stations. In the last step, a full moment tensor inversion is performed. The results from the moment tensor inversion show an improvement on the waveform fitting compared to the double couple models, which is verified by an F-test. We investigate the stability of the moment tensor solutions by employing different velocity models. The isotropic components of the moment tensor solutions of some events are not negligible, suggesting source volume changes due to fluid injection. Events with significant isotropic components occurred mainly during the stimulation phase and close to the injection well. On the other hand, events that occurred in the post-stimulation phase are predominantly pure shear failure and located further away from the well bore. These spatio-temporal patterns can be explained by the influence of pore pressure variations during and after the hydraulic stimulation at the geothermal site. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{WangWangWangetal.2016, author = {Wang, Hao and Wang, Xue-jiang and Wang, Wei-shi and Yan, Xiang-bo and Xia, Peng and Chen, Jie and Zhao, Jian-fu}, title = {Modeling and optimization of struvite recovery from wastewater and reusing for heavy metals immobilization in contaminated soil}, series = {Journal of chemical technology \& biotechnology}, volume = {91}, journal = {Journal of chemical technology \& biotechnology}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0268-2575}, doi = {10.1002/jctb.4931}, pages = {3045 -- 3052}, year = {2016}, abstract = {BACKROUND: Few studies have been carried out to connect nutrients recovery from wastewater and heavy metals immobilization in contaminated soil. To achieve the goal, ammonia nitrogen (AN) and phosphorus (P) were recovered from rare-earth wastewater by using the formation of struvite, which was used as the amendment with plant ash for copper, lead and chromium immobilization. RESULTS: AN removal efficiency and residual P reached 95.32 +/- 0.73\% and 6.14 +/- 1.72mgL(-1) under optimal conditions: pH= 9.0, n(Mg): n(N): n(P)= 1.2: 1: 1.1, which were obtained using response surface methodology (RSM). The minimum available concentrations of Cu, Pb and Cr (CPC) separately reduced to 320.82 mg kg(-1), 190.77 mg kg(-1) and 121.46 mg kg(-1) with increasing immobilization time at the mass ratio of phosphate precipitate (PP)/plant ash (PA) of 1: 3. Humic acid (HA) and fulvic acid (FA) were beneficial to immobilize Cu, both of which showed no effect or even a negative effect on Pb and Cr immobilization.}, language = {en} }