@article{XiongStolleLuehretal.2016, author = {Xiong, Chao and Stolle, Claudia and Luehr, Hermann and Park, Jaeheung and Fejer, Bela G. and Kervalishvili, Guram N.}, title = {Scale analysis of equatorial plasma irregularities derived from Swarm constellation}, series = {Earth, planets and space}, volume = {68}, journal = {Earth, planets and space}, publisher = {Springer}, address = {Heidelberg}, issn = {1880-5981}, doi = {10.1186/s40623-016-0502-5}, pages = {189 -- 202}, year = {2016}, abstract = {In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4 degrees, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT).}, language = {en} } @article{tAliuArchambaultArlenetal.2013, author = {tAliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bird, R. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Gotthelf, E. V. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Pandel, D. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, Jens and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Skole, C. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Discovery of TeV Gamma-Ray emission toward supernova remnant SNR G78.2+2.1}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {770}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/770/2/93}, pages = {7}, year = {2013}, abstract = {We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0 degrees.23 +/- 0 degrees.03(stat-0 degrees.02sys)(+0 degrees.04) and its spectrum is well-characterized by a differential power law (dN/dE = N-0 x (E/TeV)-Gamma) with a photon index of Gamma = 2.37 +/- 0.14(stat) +/- 0.20(sys) and a flux normalization of N-0 = 1.5 +/- 0.2(stat) +/- 0.4(sys) x 10(-12) photon TeV-1 cm(-2) s(-1). This yields an integral flux of 5.2 +/- 0.8(stat) +/- 1.4(sys) x 10(-12) photon cm(-2) s(-1) above 320 GeV, corresponding to 3.7\% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock.}, language = {en} } @article{ParkLuehrKervalishvilietal.2015, author = {Park, Jaeheung and L{\"u}hr, Hermann and Kervalishvili, Guram N. and Rauberg, Jan and Michaelis, Ingo and Stolle, Claudia and Kwak, Young-Sil}, title = {Nighttime magnetic field fluctuations in the topside ionosphere at midlatitudes and their relation to medium-scale traveling ionospheric disturbances: The spatial structure and scale sizes}, series = {Journal of geophysical research : Space physics}, volume = {120}, journal = {Journal of geophysical research : Space physics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2015JA021315}, pages = {6818 -- 6830}, year = {2015}, abstract = {Previous studies suggested that electric and/or magnetic field fluctuations observed in the nighttime topside ionosphere at midlatitudes generally originate from quiet time nocturnal medium-scale traveling ionospheric disturbances (MSTIDs). However, decisive evidences for the connection between the two have been missing. In this study we make use of the multispacecraft observations of midlatitude magnetic fluctuations (MMFs) in the nighttime topside ionosphere by the Swarm constellation. The analysis results show that the area hosting MMFs is elongated in the NW-SE (NE-SW) direction in the Northern (Southern) Hemisphere. The elongation direction and the magnetic field polarization support that the area hosting MMFs is nearly field aligned. All these properties of MMFs suggest that they have close relationship with MSTIDs. Expectation values of root-mean-square field-aligned currents associated with MMFs are up to about 4nA/m(2). MMF coherency significantly drops for longitudinal distances of 1 degrees.}, language = {en} } @article{GhoshDePoyGalYametal.2004, author = {Ghosh, H. and DePoy, D. L. and Gal-Yam, A. and Gaudi, B. S. and Gould, A. and Han, C. and Lipkin, Y. and Maoz, D. and Ofek, E. O. and Park, B. G. and Pogge, R. W. and Salim, S. and Abe, Fumio and Bennett, David P. and Bond, I. A. and Eguchi, S. and Furuta, Y. and Hearnshaw, John B. and Kamiya, K. and Kilmartin, Pam M. and Kurata, Y. and Masuda, Kimiaki and Matsubara, Yutaka and Muraki, Y. and Noda, S. and Okajima, K. and Rattenbury, N. J. and Sako, T. and Sekiguchi, T. and Sullivan, D. J. and Sumi, T. and Tristram, P. J. and Yanagisawa, T. and Yock, P. C. M. and Udalski, A. and Soszynski, I. and Wyrzykowski, X. and Kubiak, Marcin and Szymanski, M. K. and Pietrzynski, G. and Szewczyk, O. and Zebru,}, title = {Potential direct single-star mass measurement}, issn = {0004-637X}, year = {2004}, abstract = {We analyze the light curve of the microlensing event OGLE-2003-BLG-175/MOA-2003-BLG-45 and show that it has two properties that, when combined with future high-resolution astrometry, could lead to a direct, accurate measurement of the lens mass. First, the light curve shows clear signs of distortion due to the Earth's accelerated motion, which yields a measurement of the projected Einstein radius (r) over tilde (E). Second, from precise astrometric measurements, we show that the blended light in the event is coincident with the microlensed source to within about 15 mas. This argues strongly that this blended light is the lens and hence opens the possibility of directly measuring the lens- source relative proper motion mu(rel) and so the mass M=(c(2)/4G)mu(rel)t(E)(r) over tilde (E), where t(E) is the measured Einstein timescale. While the light-curve-based measurement of (r) over tildeE is, by itself, severely degenerate, we show that this degeneracy can be completely resolved by measuring the direction of proper motion mu(rel)}, language = {en} } @article{FurnissNodaBoggsetal.2015, author = {Furniss, A. and Noda, K. and Boggs, S. and Chiang, J. and Christensen, F. and Craig, W. and Giommi, P. and Hailey, C. and Harisson, F. and Madejski, G. and Nalewajko, K. and Perri, M. and Stern, D. and Urry, M. and Verrecchia, F. and Zhang, W. and Ahnen, M. L. and Ansoldi, S. and Antonelli, L. A. and Antoranz, P. and Babic, A. and Banerjee, B. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Becerra Gonzalez, J. and Bednarek, W. and Bernardini, E. and Biasuzzi, B. and Biland, A. and Blanch Bigas, O. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T. and Carmona, E. and Carosi, A. and Chatterjee, A. and Clavero, R. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Caneva, G. and De Lotto, B. and de Ona Wilhelmi, E. and Delgado Mendez, C. and Di Pierro, F. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Einecke, S. and Eisenacher Glawion, D. and Elsaesser, D. and Fernandez-Barral, A. and Fidalgo, D. and Fonseca, M. V. and Font, L. and Frantzen, K. and Fruck, C. and Galindo, D. and Garcia Lopez, R. J. and Garczarczyk, M. and Garrido Terrats, D. and Gaug, M. and Giammaria, P. and Godinovic, N. and Gonzalez Munoz, A. and Guberman, D. and Hanabata, Y. and Hayashida, M. and Herrera, J. and Hose, J. and Hrupec, D. and Hughes, G. and Idec, W. and Kellermann, H. and Kodani, K. and Konno, Y. and Kubo, H. and Kushida, J. and La Barbera, A. and Lelas, D. and Lewandowska, N. and Lindfors, E. and Lombardi, S. and Longo, F. and Lopez, M. and Lopez-Coto, R. and Lopez-Oramas, A. and Lorenz, E. and Majumdar, P. and Makariev, M. and Mallot, K. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Marcote, B. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Nakajima, D. and Neustroev, V. and Niedzwiecki, A. and Nievas Rosillo, M. and Nilsson, K. and Nishijima, K. and Orito, R. and Overkemping, A. and Paiano, S. and Palacio, J. and Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Persic, M. and Poutanen, J. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Garcia, J. Rodriguez and Saito, T. and Saito, K. and Satalecka, K. and Scapin, V. and Schultz, C. and Schweizer, T. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Stamerra, A. and Steinbring, T. and Strzys, M. and Takalo, L. and Takami, H. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thaele, J. and Torres, D. F. and Toyama, T. and Treves, A. and Verguilov, V. and Vovk, I. and Will, M. and Zanin, R. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Gerard, L. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Park, N. and Petry, D. and Pohl, Martin and Popkow, A. and Ragan, K. and Ratliff, G. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Vince, O. and Fuhrmann, L. and Angelakis, E. and Karamanavis, V. and Myserlis, I. and Krichbaum, T. P. and Zensus, J. A. and Ungerechts, H. and Sievers, A. and Bachev, R. and Boettcher, Markus and Chen, W. P. and Damljanovic, G. and Eswaraiah, C. and Guver, T. and Hovatta, T. and Hughes, Z. and Ibryamov, S. I. and Joner, M. D. and Jordan, B. and Jorstad, S. G. and Joshi, M. and Kataoka, J. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Latev, G. and Lin, H. C. and Larionov, V. M. and Mokrushina, A. A. and Morozova, D. A. and Nikolashvili, M. G. and Raiteri, C. M. and Ramakrishnan, V. and Readhead, A. C. R. and Sadun, A. C. and Sigua, L. A. and Semkov, E. H. and Strigachev, A. and Tammi, J. and Tornikoski, M. and Troitskaya, Y. V. and Troitsky, I. S. and Villata, M.}, title = {First NuSTAR observations of MRK 501 within a radio to TeV multi-instrument campaign}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {812}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {NuSTAR Team, MAGIC Collaboration, VERITAS Collaboration, F-Gamma Consortium}, issn = {0004-637X}, doi = {10.1088/0004-637X/812/1/65}, pages = {22}, year = {2015}, abstract = {We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 2013 April 1 and August 10, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope, Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Metsahovi, and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a Light Detection and Ranging (LIDAR) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution (SED) between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) show evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton (SSC) model to five simultaneous broadband SEDs. We find that the SSC model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission.}, language = {en} } @article{BenbowBirdBrilletal.2019, author = {Benbow, W. and Bird, R. and Brill, A. and Brose, Robert and Chromey, A. J. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Giuri, C. and Gueta, O. and Hanna, D. and Halpern, J. P. and Hassan, Tarek and Holder, J. and Hughes, G. and Humensky, T. B. and Joyce, Amy M. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Lin, T. T. Y. and Maier, Gernot and Matthews, N. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Nievas-Rosillos, M. and Ong, R. A. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, John and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, Iftach and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Sushch, Iurii and Wakely, S. P. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Williamson, T. J.}, title = {Direct measurement of stellar angular diameters by the VERITAS Cherenkov telescopes}, series = {Nature astronomy}, volume = {3}, journal = {Nature astronomy}, number = {6}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-3366}, doi = {10.1038/s41550-019-0741-z}, pages = {511 -- 516}, year = {2019}, abstract = {The angular size of a star is a critical factor in determining its basic properties1. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star2, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation3. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements4. Here we report two occultations of stars observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS)5 Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars' angular diameter at the ≤0.1 mas scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method6. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications.}, language = {en} } @article{ArlenAuneBeilickeetal.2013, author = {Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Cesarini, A. and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickherber, R. and Dumm, J. and Errando, M. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Maier, G. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Tsurusaki, K. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Jorstad, S. G. and MacDonald, N. R. and Marscher, A. P. and Smith, P. S. and Walker, R. C. and Hovatta, T. and Richards, J. and Max-Moerbeck, W. and Readhead, A. and Lister, M. L. and Kovalev, Y. Y. and Pushkarev, A. B. and Gurwell, M. A. and Lahteenmaki, A. and Nieppola, E. and Tornikoski, M. and Jarvela, E.}, title = {Rapid TeV Gamma-Ray flaring of bl lacertae}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {762}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/762/2/92}, pages = {13}, year = {2013}, abstract = {We report on the detection of a very rapid TeV gamma-ray flare from BL Lacertae on 2011 June 28 with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The flaring activity was observed during a 34.6 minute exposure, when the integral flux above 200 GeV reached (3.4 +/- 0.6) x 10(-6) photons m(-2) s(-1), roughly 125\% of the Crab Nebula flux measured by VERITAS. The light curve indicates that the observations missed the rising phase of the flare but covered a significant portion of the decaying phase. The exponential decay time was determined to be 13 +/- 4 minutes, making it one of the most rapid gamma-ray flares seen from a TeV blazar. The gamma-ray spectrum of BL Lacertae during the flare was soft, with a photon index of 3.6 +/- 0.4, which is in agreement with the measurement made previously by MAGIC in a lower flaring state. Contemporaneous radio observations of the source with the Very Long Baseline Array revealed the emergence of a new, superluminal component from the core around the time of the TeV gamma-ray flare, accompanied by changes in the optical polarization angle. Changes in flux also appear to have occurred at optical, UV, and GeV gamma-ray wavelengths at the time of the flare, although they are difficult to quantify precisely due to sparse coverage. A strong flare was seen at radio wavelengths roughly four months later, which might be related to the gamma-ray flaring activities. We discuss the implications of these multiwavelength results.}, language = {en} } @article{ArlenAuneBeilickeetal.2012, author = {Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Dumm, J. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Imran, A. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Pfrommer, C. and Pinzke, A.}, title = {Constraints on cosmic rays, magnetic fields, and dark matter fromgamma-ray observations of the coma cluster of galaxies with veritas and fermi}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {757}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/757/2/123}, pages = {14}, year = {2012}, abstract = {Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E > 100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99\% confidence level were measured to be on the order of (2-5) x 10(-8) photonsm(-2) s(-1) (VERITAS, >220 GeV) and similar to 2 x 10(-6) photonsm(-2) s(-1) (Fermi, 1-3GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be < 16\% from VERITAS data and <1.7\% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50\%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of similar to(2-5.5) mu G, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, .}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Bugaev, V and Cui, Wei and Danie, M. K. and Falcone, A. and Feng, Qi and Finley, John P. and Flinders, A. and Fortson, L. and Furniss, Amy and Gillanders, Gerard H. and Huttens, M. and Hanna, David and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, Reshmi and Nieto, Daniel and Ong, R. A. and Otte, A. N. and Park, Nahee and Petrashyk, A. and Pohl, Martin and Popkow, Alexis and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynold, P. T. and Richards, Gregory T. and Roache, E. and Rulten, C. and Sadeh, I and Sembroski, G. H. and Shahinyan, Karlen and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, David A. and Brisken, W. F. and Pontrelli, P.}, title = {HESS J1943+213}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {862}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/aacbd0}, pages = {15}, year = {2018}, abstract = {HESS J1943+213 is a very high energy (VHE; > 100 GeV) gamma-ray source in the direction of the Galactic plane. Studies exploring the classification of the source are converging toward its identification as an extreme synchrotron BL Lac object. Here we present 38 hr of VERITAS observations of HESS J1943+213 taken over 2 yr. The source is detected with a significance of similar to 20 standard deviations, showing a remarkably stable flux and spectrum in VHE gamma-rays. Multifrequency Very Long Baseline Array (VLBA) observations of the source confirm the extended, jet-like structure previously found in the 1.6 GHz band with the European VLBI Network and detect this component in the 4.6 and 7.3 GHz bands. The radio spectral indices of the core and the jet and the level of polarization derived from the VLBA observations are in a range typical for blazars. Data from VERITAS, Fermi-LAT, Swift-XRT, the FLWO 48 ' telescope, and archival infrared and hard X-ray observations are used to construct and model the spectral energy distribution (SED) of the source with a synchrotron self-Compton model. The well-measured gamma-ray peak of the SED with VERITAS and Fermi-LAT provides constraining upper limits on the source redshift. Possible contribution of secondary gamma-rays from ultra-high-energy cosmic-ray-initiated electromagnetic cascades to the gamma-ray emission is explored, finding that only a segment of the VHE spectrum can be accommodated with this process. A variability search is performed across X-ray and gamma-ray bands. No statistically significant flux or spectral variability is detected.}, language = {en} } @article{ArcherBenbowBirdetal.2019, author = {Archer, A. and Benbow, Wystan and Bird, Ralph and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Chromey, A. J. and Cui, Wei and Falcone, A. and Feng, Qi and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Olivier and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, Philip and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, David and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and McCann, A. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Otte, Adam Nepomuk and Pandel, D. and Park, N. and Petrashyk, A. and Pohl, Martin and Pueschel, Elisa and Quinn, J. and Ragan, K. and Richards, Gregory T. and Roache, E. and Sadeh, I and Santander, Marcos and Scott, S. S. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {A Search for Pulsed Very High-energy Gamma-Rays from 13 Young Pulsars in Archival VERITAS Data}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {876}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab14f4}, pages = {14}, year = {2019}, abstract = {We conduct a search for periodic emission in the very high-energy (VHE) gamma-ray band (E > 100 GeV) from a total of 13 pulsars in an archival VERITAS data set with a total exposure of over 450 hr. The set of pulsars includes many of the brightest young gamma-ray pulsars visible in the Northern Hemisphere. The data analysis resulted in nondetections of pulsed VHE gamma-rays from each pulsar. Upper limits on a potential VHE gamma-ray flux are derived at the 95\% confidence level above three energy thresholds using two methods. These are the first such searches for pulsed VHE emission from each of the pulsars, and the obtained limits constrain a possible flux component manifesting at VHEs as is seen for the Crab pulsar.}, language = {en} }