@article{ArridgeAchilleosAgarwaletal.2014, author = {Arridge, Christopher S. and Achilleos, N. and Agarwal, Jessica and Agnor, C. B. and Ambrosi, R. and Andre, N. and Badman, S. V. and Baines, K. and Banfield, D. and Barthelemy, M. and Bisi, M. M. and Blum, J. and Bocanegra-Bahamon, T. and Bonfond, B. and Bracken, C. and Brandt, P. and Briand, C. and Briois, C. and Brooks, S. and Castillo-Rogez, J. and Cavalie, T. and Christophe, B. and Coates, Andrew J. and Collinson, G. and Cooper, J. F. and Costa-Sitja, M. and Courtin, R. and Daglis, I. A. and De Pater, Imke and Desai, M. and Dirkx, D. and Dougherty, M. K. and Ebert, R. W. and Filacchione, Gianrico and Fletcher, Leigh N. and Fortney, J. and Gerth, I. and Grassi, D. and Grodent, D. and Gr{\"u}n, Eberhard and Gustin, J. and Hedman, M. and Helled, R. and Henri, P. and Hess, Sebastien and Hillier, J. K. and Hofstadter, M. H. and Holme, R. and Horanyi, M. and Hospodarsky, George B. and Hsu, S. and Irwin, P. and Jackman, C. M. and Karatekin, O. and Kempf, Sascha and Khalisi, E. and Konstantinidis, K. and Kruger, H. and Kurth, William S. and Labrianidis, C. and Lainey, V. and Lamy, L. L. and Laneuville, Matthieu and Lucchesi, D. and Luntzer, A. and MacArthur, J. and Maier, A. and Masters, A. and McKenna-Lawlor, S. and Melin, H. and Milillo, A. and Moragas-Klostermeyer, Georg and Morschhauser, Achim and Moses, J. I. and Mousis, O. and Nettelmann, N. and Neubauer, F. M. and Nordheim, T. and Noyelles, B. and Orton, G. S. and Owens, Mathew and Peron, R. and Plainaki, C. and Postberg, F. and Rambaux, N. and Retherford, K. and Reynaud, Serge and Roussos, E. and Russell, C. T. and Rymer, Am. and Sallantin, R. and Sanchez-Lavega, A. and Santolik, O. and Saur, J. and Sayanagi, Km. and Schenk, P. and Schubert, J. and Sergis, N. and Sittler, E. C. and Smith, A. and Spahn, Frank and Srama, Ralf and Stallard, T. and Sterken, V. and Sternovsky, Zoltan and Tiscareno, M. and Tobie, G. and Tosi, F. and Trieloff, M. and Turrini, D. and Turtle, E. P. and Vinatier, S. and Wilson, R. and Zarkat, P.}, title = {The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets}, series = {Planetary and space science}, volume = {104}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2014.08.009}, pages = {122 -- 140}, year = {2014}, abstract = {Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99\% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013.}, language = {en} } @article{SchenkHamiltonJohnsonetal.2011, author = {Schenk, Paul and Hamilton, Douglas P. and Johnson, Robert E. and McKinnon, William B. and Paranicas, Chris and Schmidt, J{\"u}rgen and Showalter, Mark R.}, title = {Plasma, plumes and rings saturn system dynamics as recorded in global color patterns on its midsize icy satellites}, series = {Icarus : international journal of solar system studies}, volume = {211}, journal = {Icarus : international journal of solar system studies}, number = {1}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2010.08.016}, pages = {740 -- 757}, year = {2011}, abstract = {New global maps of the five inner midsize icy saturnian satellites, Mimas, Enceladus, Tethys, Dione, and Rhea, have been constructed in three colors (UV, Green and near-IR) at resolutions of 1 km/pixel. The maps reveal prominent global patterns common to several of these satellites but also three major color features unique to specific satellites or satellite subgroups. The most common features among the group are first-order global asymmetries in color properties. This pattern, expressed on Tethys, Dione and Rhea, takes the form of a similar to 1.4-1.8 times enhancement in redness (expressed as IR/UV ratio) of the surface at the center of the trailing hemisphere of motion, and a similar though significantly weaker IR/UV enhancement at the center of the leading hemisphere. The peak in redness on the trailing hemisphere also corresponds to a known decrease in albedo. These double hemispheric asymmetries are attributable to plasma and E-ring grain bombardment on the trailing and leading hemispheres, respectively, for the outer three satellites Tethys, Dione and Rhea, whereas as E-ring bombardment may be focused on the trailing hemisphere of Mimas due to its orbital location interior to Enceladus. The maps also reveal three major deviations from these basic global patterns. We observe the previously known dark bluish leading hemisphere equatorial band on Tethys but have also discovered a similar band on Mimas. Similar in shape, both features match the surface patterns expected for irradiation of the surface by incident MeV electrons that drift in a direction opposite to the plasma flow. The global asymmetry on Enceladus is offset similar to 40 degrees to the west compared to the other satellites. We do not consider Enceladus in detail here, but the global distribution of bluish material can be shown to match the deposition pattern predicted for plume fallback onto the surface (Kempf, S., Beckmann, U., Schmidt, S. [2010]. Icarus 206, 446-457. doi:10.1016/j.icarus.2009.09.016). E-ring deposition on Enceladus thus appears to mask or prevent the formation of the lenses and hemispheric asymmetries we see on the other satellites. Finally, we observe a chain of discrete bluish splotches along the equator of Rhea. Unlike the equatorial bands of Tethys and Mimas, these splotches form a very narrow great circle <= 10-km wide (north-to-south) and appear to be related to surface disruption, exposing fresh, bluish ice on older crater rims. This feature is unique to Rhea and may have formed by impact onto its surface of orbiting material.}, language = {en} }