@article{Natho2021, author = {Natho, Stephanie}, title = {How Flood Hazard Maps Improve the Understanding of Ecologically Active Floodplains}, series = {Water / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Water / Molecular Diversity Preservation International (MDPI)}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w13070937}, pages = {17}, year = {2021}, abstract = {Floodplains are threatened ecosystems and are not only ecologically meaningful but also important for humans by creating multiple benefits. Many underlying functions, like nutrient retention, carbon sequestration or water regulation, strongly depend on regular inundation. So far, these are approached on the basis of what are called 'active floodplains'. Active floodplains, defined as statistically inundated once every 100 years, represent less than 10\% of a floodplain's original size. Still, should this remaining area be considered as one homogenous surface in terms of floodplain function, or are there any alternative approaches to quantify ecologically active floodplains? With the European Flood Hazard Maps, the extent of not only medium floods (T-medium) but also frequent floods (T-frequent) needs to be modelled by all member states of the European Union. For large German rivers, both scenarios were compared to quantify the extent, as well as selected indicators for naturalness derived from inundation. It is assumed that the more naturalness there is, the more inundation and the better the functioning. Real inundation was quantified using measured discharges from relevant gauges over the past 20 years. As a result, land uses indicating strong human impacts changed significantly from T-frequent to T-medium floodplains. Furthermore, the extent, water depth and water volume stored in the T-frequent and T-medium floodplains is significantly different. Even T-frequent floodplains experienced inundation for only half of the considered gauges during the past 20 years. This study gives evidence for considering regulation functions on the basis of ecologically active floodplains, meaning in floodplains with more frequent inundation that T-medium floodplains delineate.}, language = {en} } @article{NathoTschikofBondarKunzeetal.2020, author = {Natho, Stephanie and Tschikof, Martin and Bondar-Kunze, Elisabeth and Hein, Thomas}, title = {Modeling the effect of enhanced lateral connectivity on nutrient retention capacity in large river floodplains}, series = {Frontiers in Environmental Science}, volume = {8}, journal = {Frontiers in Environmental Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-665X}, doi = {10.3389/fenvs.2020.00074}, pages = {16}, year = {2020}, abstract = {Floodplains have been degraded in Central Europe for centuries, resulting in less dynamic and less diverse ecosystems than in the past. They provide essential ecosystem services like nutrient retention to improve overall water quality and thus fulfill naturally what EU legislation demands, but this service is impaired by reduced connectivity patterns. Along the second-longest river in Europe, the Danube, restoration measures have been carried out and are planned for the near future in the Austrian Danube Floodplain National Park in accordance with navigation purposes. We investigated nutrient retention capacity in seven currently differently connected side arms and the effects of proposed restoration measures using two complementary modeling approaches. We modeled nutrient retention capacity in two scenarios considering different hydrological conditions, as well as the consequences of planned restoration measures for side arm connectivity. With existing monitoring data on hydrology, nitrate, and total phosphorus concentrations for three side arms, we applied a statistical model and compared these results to a semi-empirical retention model. The latter was originally developed for larger scales, based on transferable causalities of retention processes and set up for this floodplain with publicly available data. Both model outcomes are in a comparable range for NO3-N (77-198 kg ha(-1)yr(-1)) and TP (1.4-5.7 kg ha(-1)yr(-1)) retention and agree in calculating higher retention in floodplains, where reconnection allows more frequent inundation events. However, the differences in the model results are significant for specific aspects especially during high flows, where the semi-empirical model complements the statistical model. On the other hand, the statistical model complements the semi-empirical model when taking into account nutrient retention at times of no connection between the remaining water bodies left in the floodplain. Overall, both models show clearly that nutrient retention in the Danube floodplains can be enhanced by restoring lateral hydrological reconnection and, for all planned measures, a positive effect on the overall water quality of the Danube River is expected. Still, a frequently hydrologically connected stretch of national park is insufficient to improve the water quality of the whole Upper Danube, and more functional floodplains are required.}, language = {en} } @misc{Natho2021, author = {Natho, Stephanie}, title = {How Flood Hazard Maps Improve the Understanding of Ecologically Active Floodplains}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1147}, issn = {1866-8372}, doi = {10.25932/publishup-51761}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517613}, pages = {19}, year = {2021}, abstract = {Floodplains are threatened ecosystems and are not only ecologically meaningful but also important for humans by creating multiple benefits. Many underlying functions, like nutrient retention, carbon sequestration or water regulation, strongly depend on regular inundation. So far, these are approached on the basis of what are called 'active floodplains'. Active floodplains, defined as statistically inundated once every 100 years, represent less than 10\% of a floodplain's original size. Still, should this remaining area be considered as one homogenous surface in terms of floodplain function, or are there any alternative approaches to quantify ecologically active floodplains? With the European Flood Hazard Maps, the extent of not only medium floods (T-medium) but also frequent floods (T-frequent) needs to be modelled by all member states of the European Union. For large German rivers, both scenarios were compared to quantify the extent, as well as selected indicators for naturalness derived from inundation. It is assumed that the more naturalness there is, the more inundation and the better the functioning. Real inundation was quantified using measured discharges from relevant gauges over the past 20 years. As a result, land uses indicating strong human impacts changed significantly from T-frequent to T-medium floodplains. Furthermore, the extent, water depth and water volume stored in the T-frequent and T-medium floodplains is significantly different. Even T-frequent floodplains experienced inundation for only half of the considered gauges during the past 20 years. This study gives evidence for considering regulation functions on the basis of ecologically active floodplains, meaning in floodplains with more frequent inundation that T-medium floodplains delineate.}, language = {en} }