@article{NeugebauerBrauerDraegeretal.2012, author = {Neugebauer, Ina and Brauer, Achim and Draeger, Nadine and Dulski, Peter and Wulf, Sabine and Plessen, Birgit and Mingram, Jens and Herzschuh, Ulrike and Brande, Arthur}, title = {A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {36}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {10}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2011.12.010}, pages = {91 -- 102}, year = {2012}, abstract = {The first 1400-year floating varve chronology for north-eastern Germany covering the late Allered to the early Holocene has been established by microscopic varve counts from the Rehwiese palaeolake sediment record. The Laacher See Tephra (LST), at the base of the studied interval, forms the tephrochronological anchor point. The fine laminations were examined using a combination of micro-facies and mu XRF analyses and are typical of calcite varves, which in this case provide mainly a warm season signal. Two varve types with different sub-layer structures have been distinguished: (I) complex varves consisting of up to four seasonal sub-layers formed during the Allered and early Holocene periods, and, (II) simple two sub-layer type varves only occurring during the Younger Dryas. The precision of the chronology has been improved by varve-to-varve comparison of two independently analyzed sediment profiles based on well-defined micro-marker layers. This has enabled both (1) the precise location of single missing varies in one of the sediment profiles, and, (2) the verification of varve interpolation in disturbed varve intervals in the parallel core. Inter-annual and decadal-scale variability in sediment deposition processes were traced by multi-proxy data series including seasonal layer thickness, high-resolution element scans and total organic and inorganic carbon data at a five-varve resolution. These data support the idea of a two-phase Younger Dryas, with the first interval (12,675-12,275 varve years BP) characterised by a still significant but gradually decreasing warm-season calcite precipitation and a second phase (12,275-11,690 varve years BP) with only weak calcite precipitation. Detailed correlation of these two phases with the Meerfelder Maar record based on the LST isochrone and independent varve counts provides clues about regional differences and seasonal aspects of YD climate change along a transect from a location proximal to the North Atlantic in the west to a more continental site in the east}, language = {en} } @article{BeckmannKadowSchumacheretal.2018, author = {Beckmann, Nadine and Kadow, Stephanie and Schumacher, Fabian and Goethert, Joachim R. and Kesper, Stefanie and Draeger, Annette and Schulz-Schaeffer, Walter J. and Wang, Jiang and Becker, Jan U. and Kramer, Melanie and Kuehn, Claudine and Kleuser, Burkhard and Becker, Katrin Anne and Gulbins, Erich and Carpinteiro, Alexander}, title = {Pathological manifestations of Farber disease in a new mouse model}, series = {Biological chemistry}, volume = {399}, journal = {Biological chemistry}, number = {10}, publisher = {De Gruyter}, address = {Berlin}, issn = {1431-6730}, doi = {10.1515/hsz-2018-0170}, pages = {1183 -- 1202}, year = {2018}, abstract = {Farber disease (FD) is a rare lysosomal storage disorder resulting from acid ceramidase deficiency and subsequent ceramide accumulation. No treatments are clinically available and affected patients have a severely shortened lifespan. Due to the low incidence, the pathogenesis of FD is still poorly understood. Here, we report a novel acid ceramidase mutant mouse model that enables the study of pathogenic mechanisms of FD and ceramide accumulation. Asah1(tmEx1) mice were generated by deletion of the acid ceramidase signal peptide sequence. The effects on lysosomal targeting and activity of the enzyme were assessed. Ceramide and sphingomyelin levels were quantified by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and disease manifestations in several organ systems were analyzed by histology and biochemistry. We show that deletion of the signal peptide sequence disrupts lysosomal targeting and enzyme activity, resulting in ceramide and sphingomyelin accumulation. The affected mice fail to thrive and die early. Histiocytic infiltrations were observed in many tissues, as well as lung inflammation, liver fibrosis, muscular disease manifestations and mild kidney injury. Our new mouse model mirrors human FD and thus offers further insights into the pathogenesis of this disease. In the future, it may also facilitate the development of urgently needed therapies.}, language = {en} }