@article{HaenzelmannDahlKuperetal.2009, author = {Haenzelmann, Petra and Dahl, Jan U. and Kuper, Jochen and Urban, Alexander and Mueller-Theissen, Ursula and Leimk{\"u}hler, Silke and Schindelin, Hermann}, title = {Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains}, issn = {0961-8368}, doi = {10.1002/pro.260}, year = {2009}, abstract = {Rhodaneses/sulfurtransferases are ubiquitous enzymes that catalyze the transfer of sulfane sulfur from a donor molecule to a thiophilic acceptor via an active site cysteine that is modified to a persulfide during the reaction. Here, we present the first crystal structure of a triple-domain rhodanese-like protein, namely YnjE from Escherichia coli, in two states where its active site cysteine is either unmodified or present as a persulfide. Compared to well- characterized tandem domain rhodaneses, which are composed of one inactive and one active domain, YnjE contains an extra N-terminal inactive rhodanese-like domain. Phylogenetic analysis reveals that YnjE triple-domain homologs can be found in a variety of other gamma-proteobacteria, in addition, some single-, tandem-, four and even six-domain variants exist. All YnjE rhodaneses are characterized by a highly conserved active site loop (CGTGWR) and evolved independently from other rhodaneses, thus forming their own subfamily. On the basis of structural comparisons with other rhodaneses and kinetic studies, YnjE, which is more similar to thiosulfate:cyanide sulfurtransferases than to 3- mercaptopyruvate:cyanide sulfurtransferases, has a different substrate specificity that depends not only on the composition of the active site loop with the catalytic cysteine at the first position but also on the surrounding residues. In vitro YnjE can be efficiently persulfurated by the cysteine desulfurase IscS. The catalytic site is located within an elongated cleft, formed by the central and C-terminal domain and is lined by bulky hydrophobic residues with the catalytic active cysteine largely shielded from the solvent.}, language = {en} } @article{MuellerKoszinskiBrenningetal.2011, author = {Mueller, Marina Elsa Herta and Koszinski, Sylvia and Brenning, Alexander and Verch, Gernot and Korn, Ulrike and Sommer, Michael}, title = {Within-field variation of mycotoxin contamination of winter wheat is related to indicators of soil moisture}, series = {Plant and soil}, volume = {342}, journal = {Plant and soil}, number = {1-2}, publisher = {Springer}, address = {Dordrecht}, issn = {0032-079X}, doi = {10.1007/s11104-010-0695-5}, pages = {289 -- 300}, year = {2011}, abstract = {Humidity is an important determinant of the mycotoxin production (DON, ZEA) by Fusarium species in the grain ears. From a landscape perspective humidity is not evenly distributed across fields. The topographically-controlled redistribution of water within a single field rather leads to spatially heterogeneous soil water content and air humidity. Therefore we hypothesized that the spatial distribution of mycotoxins is related to these topographically-controlled factors. To test this hypothesis we studied the mycotoxin concentrations at contrasting topographic relief positions, i.e. hilltops and depressions characterized by soils of different soil moisture regimes, on ten winter wheat fields in 2006 and 2007. Maize was the preceding crop and minimum tillage was practiced in the fields. The different topographic positions were associated with moderate differences in DON and ZEA concentrations in 2006, but with significant differences in 2007, with six times higher median ZEA and two times higher median DON detected at depression sites compared to the hilltops. The depression sites correspond to a higher topographic wetness index as well as redoximorphic properties in soil profiles, which empirically supports our hypothesis at least for years showing wetter conditions in sensitive time windows for Fusarium infections.}, language = {en} } @misc{ArnisonBibbBierbaumetal.2013, author = {Arnison, Paul G. and Bibb, Mervyn J. and Bierbaum, Gabriele and Bowers, Albert A. and Bugni, Tim S. and Bulaj, Grzegorz and Camarero, Julio A. and Campopiano, Dominic J. and Challis, Gregory L. and Clardy, Jon and Cotter, Paul D. and Craik, David J. and Dawson, Michael and Dittmann-Th{\"u}nemann, Elke and Donadio, Stefano and Dorrestein, Pieter C. and Entian, Karl-Dieter and Fischbach, Michael A. and Garavelli, John S. and Goeransson, Ulf and Gruber, Christian W. and Haft, Daniel H. and Hemscheidt, Thomas K. and Hertweck, Christian and Hill, Colin and Horswill, Alexander R. and Jaspars, Marcel and Kelly, Wendy L. and Klinman, Judith P. and Kuipers, Oscar P. and Link, A. James and Liu, Wen and Marahiel, Mohamed A. and Mitchell, Douglas A. and Moll, Gert N. and Moore, Bradley S. and Mueller, Rolf and Nair, Satish K. and Nes, Ingolf F. and Norris, Gillian E. and Olivera, Baldomero M. and Onaka, Hiroyasu and Patchett, Mark L. and Piel, J{\"o}rn and Reaney, Martin J. T. and Rebuffat, Sylvie and Ross, R. Paul and Sahl, Hans-Georg and Schmidt, Eric W. and Selsted, Michael E. and Severinov, Konstantin and Shen, Ben and Sivonen, Kaarina and Smith, Leif and Stein, Torsten and Suessmuth, Roderich D. and Tagg, John R. and Tang, Gong-Li and Truman, Andrew W. and Vederas, John C. and Walsh, Christopher T. and Walton, Jonathan D. and Wenzel, Silke C. and Willey, Joanne M. and van der Donk, Wilfred A.}, title = {Ribosomally synthesized and post-translationally modified peptide natural products overview and recommendations for a universal nomenclature}, series = {Natural product reports : a journal of current developments in bio-organic chemistry}, volume = {30}, journal = {Natural product reports : a journal of current developments in bio-organic chemistry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0265-0568}, doi = {10.1039/c2np20085f}, pages = {108 -- 160}, year = {2013}, abstract = {This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.}, language = {en} } @article{HolldackOvsyannikovKuskeetal.2014, author = {Holldack, Karsten and Ovsyannikov, Ruslan and Kuske, P. and Mueller, R. and Schaelicke, A. and Scheer, M. and Gorgoi, Mihaela and Kuehn, D. and Leitner, T. and Svensson, S. and Martensson, N. and F{\"o}hlisch, Alexander}, title = {Single bunch X-ray pulses on demand from a multi-bunch synchrotron radiation source}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms5010}, pages = {7}, year = {2014}, abstract = {Synchrotron radiation facilities routinely operate in a multi-bunch regime, but applications relying on time-of-flight schemes require single bunch operation. Here we show that pulse picking by resonant excitation in a storage ring creates in addition to the multi-bunch operation a distinct and separable single bunch soft X-ray source. It has variable polarization, a photon flux of up to 10(7)-10(9) ph s(-1)/0.1\%BW at purity values of 10(4)-10(2) and a repetition rate of 1.25 MHz. The quasi-resonant excitation of incoherent betatron oscillations of electrons allows horizontal pulse separation at variable (also circular) polarization accessible for both, regular 30 ps pulses and ultrashort pulses of 2-3 ps duration. Combined with a new generation of angularly resolving electron spectrometers this creates unique opportunities for time-resolved photoemission studies as confirmed by time-of-flight spectra. Our pulse picking scheme is particularly suited for surface physics at diffraction-limited light sources promising ultimate spectral resolution.}, language = {en} } @misc{MoserTschakertMuelleretal.2015, author = {Moser, Othmar and Tschakert, Gerhard and Mueller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Obermayer-Pietsch, Barbara and Koehler, Gerd and Hofmann, Peter}, title = {Effects of high-intensity interval exercise versus moderate continuous exercise on glucose homeostasis and hormone response in patients with type 1 diabetes mellitus using novel ultra-long-acting insulin}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {497}, issn = {1866-8364}, doi = {10.25932/publishup-40834}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408342}, pages = {17}, year = {2015}, abstract = {Introduction We investigated blood glucose (BG) and hormone response to aerobic high-intensity interval exercise (HIIE) and moderate continuous exercise (CON) matched for mean load and duration in type 1 diabetes mellitus (T1DM). Material and Methods Seven trained male subjects with T1DM performed a maximal incremental exercise test and HIIE and CON at 3 different mean intensities below (A) and above (B) the first lactate turn point and below the second lactate turn point (C) on a cycle ergometer. Subjects were adjusted to ultra-long-acting insulin Degludec (Tresiba/Novo Nordisk, Denmark). Before exercise, standardized meals were administered, and short-acting insulin dose was reduced by 25\% (A), 50\% (B), and 75\% (C) dependent on mean exercise intensity. During exercise, BG, adrenaline, noradrenaline, dopamine, cortisol, glucagon, and insulin-like growth factor-1, blood lactate, heart rate, and gas exchange variables were measured. For 24 h after exercise, interstitial glucose was measured by continuous glucose monitoring system. Results BG decrease during HIIE was significantly smaller for B (p = 0.024) and tended to be smaller for A and C compared to CON. No differences were found for post-exercise interstitial glucose, acute hormone response, and carbohydrate utilization between HIIE and CON for A, B, and C. In HIIE, blood lactate for A (p = 0.006) and B (p = 0.004) and respiratory exchange ratio for A (p = 0.003) and B (p = 0.003) were significantly higher compared to CON but not for C. Conclusion Hypoglycemia did not occur during or after HIIE and CON when using ultra-long-acting insulin and applying our methodological approach for exercise prescription. HIIE led to a smaller BG decrease compared to CON, although both exercises modes were matched for mean load and duration, even despite markedly higher peak workloads applied in HIIE. Therefore, HIIE and CON could be safely performed in T1DM.}, language = {en} } @article{MoserMaderTschakertetal.2016, author = {Moser, Othmar and Mader, Julia K. and Tschakert, Gerhard and Mueller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Koehler, Gerd and Messerschmidt, Janin and Hofmann, Peter}, title = {Accuracy of Continuous Glucose Monitoring (CGM) during Continuous and High-Intensity Interval Exercise in Patients with Type 1 Diabetes Mellitus}, series = {Nutrients}, volume = {8}, journal = {Nutrients}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu8080489}, pages = {15}, year = {2016}, abstract = {Continuous exercise (CON) and high-intensity interval exercise (HIIE) can be safely performed with type 1 diabetes mellitus (T1DM). Additionally, continuous glucose monitoring (CGM) systems may serve as a tool to reduce the risk of exercise-induced hypoglycemia. It is unclear if CGM is accurate during CON and HIIE at different mean workloads. Seven T1DM patients performed CON and HIIE at 5\% below (L) and above (M) the first lactate turn point (LTP1), and 5\% below the second lactate turn point (LTP2) (H) on a cycle ergometer. Glucose was measured via CGM and in capillary blood (BG). Differences were found in comparison of CGM vs. BG in three out of the six tests (p < 0.05). In CON, bias and levels of agreement for L, M, and H were found at: 0.85 (-3.44, 5.15) mmol.L-1, -0.45 (-3.95, 3.05) mmol.L-1, -0.31 (-8.83, 8.20) mmol.L-1 and at 1.17 (-2.06, 4.40) mmol.L-1, 0.11 (-5.79, 6.01) mmol.L-1, 1.48 (-2.60, 5.57) mmol.L-1 in HIIE for the same intensities. Clinically-acceptable results (except for CON H) were found. CGM estimated BG to be clinically acceptable, except for CON H. Additionally, using CGM may increase avoidance of exercise-induced hypoglycemia, but usual BG control should be performed during intense exercise.}, language = {en} } @article{TschakertKroepflMuelleretal.2015, author = {Tschakert, Gerhard and Kroepfl, Julia and Mueller, Alexander and Moser, Othmar and Groeschl, Werner and Hofmann, Peter}, title = {How to Regulate the Acute Physiological Response to "Aerobic" High-Intensity Interval Exercise}, series = {Journal of sports science \& medicine}, volume = {14}, journal = {Journal of sports science \& medicine}, number = {1}, publisher = {Department of Sports Medicine, Medical Faculty of Uludag University}, address = {Bursa}, issn = {1303-2968}, pages = {29 -- 36}, year = {2015}, abstract = {The acute physiological processes during "aerobic" high-intensity interval exercise (HIIE) and their regulation are inadequately studied. The main goal of this study was to investigate the acute metabolic and cardiorespiratory response to long and short HIIE compared to continuous exercise (CE) as well as its regulation and predictability. Six healthy well-trained sport students (5 males, 1 female; age: 25.7 +/- 3.1 years; height: 1.80 +/- 0.04 m; weight: 76.7 +/- 6.4 kg; VO2max: 4.33 +/- 0.7 l.min(-1)) performed a maximal incremental exercise test (IET) and subsequently three different exercise sessions matched for mean load (P-mean) and exercise duration (28 min): 1) long HIIE with submaximal peak workloads (P-peak = power output at 95 \% of maximum heart rate), peak workload durations (t(peak)) of 4 min, and recovery durations (t(rec)) of 3 min, 2) short HIIE with P-peak according to the maximum power output (P-max) from IET, t(peak) of 20 s, and individually calculated t(rec) (26.7 +/- 13.4 s), and 3) CE with a target workload (P-target) equating to P-mean of HIIE. In short HIIE, mean lactate (La-mean) (5.22 +/- 1.41 mmol.l(-1)), peak La (7.14 +/- 2.48 mmol.l(-1)), and peak heart rate (HRpeak) (181.00 +/- 6.66 b.min(-1)) were significantly lower compared to long HIIE (La-mean: 9.83 +/- 2.78 mmol.l(-1); La-peak: 12.37 +/- 4.17 mmol.l(-1), HRpeak: 187.67 +/- 5.72 b.min(-1)). No significant differences in any parameters were found between short HIIE and CE despite considerably higher peak workloads in short HIIE. The acute metabolic and peak cardiorespiratory demand during "aerobic" short HIIE was significantly lower compared to long HIIE and regulable via Pmean. Consequently, short HIIE allows a consciously aimed triggering of specific and desired or required acute physiological responses.}, language = {en} } @misc{MoserMaderTschakertetal.2017, author = {Moser, Othmar and Mader, Julia K. and Tschakert, Gerhard and Mueller, Alexander and Groeschl, Werner and Pieber, Thomas R. and Koehler, Gerd and Messerschmidt, Janin and Hofmann, Peter}, title = {Accuracy of Continuous Glucose Monitoring (CGM) during continuous and high-intensity interval exercise in patients with Type 1 Diabetes Mellitus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400470}, pages = {15}, year = {2017}, abstract = {Continuous exercise (CON) and high-intensity interval exercise (HIIE) can be safely performed with type 1 diabetes mellitus (T1DM). Additionally, continuous glucose monitoring (CGM) systems may serve as a tool to reduce the risk of exercise-induced hypoglycemia. It is unclear if CGM is accurate during CON and HIIE at different mean workloads. Seven T1DM patients performed CON and HIIE at 5\% below (L) and above (M) the first lactate turn point (LTP1), and 5\% below the second lactate turn point (LTP2) (H) on a cycle ergometer. Glucose was measured via CGM and in capillary blood (BG). Differences were found in comparison of CGM vs. BG in three out of the six tests (p < 0.05). In CON, bias and levels of agreement for L, M, and H were found at: 0.85 (-3.44, 5.15) mmol·L-1, -0.45 (-3.95, 3.05) mmol·L-1, -0.31 (-8.83, 8.20) mmol·L-1 and at 1.17 (-2.06, 4.40) mmol·L-1, 0.11 (-5.79, 6.01) mmol·L-1, 1.48 (-2.60, 5.57) mmol·L-1 in HIIE for the same intensities. Clinically-acceptable results (except for CON H) were found. CGM estimated BG to be clinically acceptable, except for CON H. Additionally, using CGM may increase avoidance of exercise-induced hypoglycemia, but usual BG control should be performed during intense exercise.}, language = {en} } @misc{MoserMuellerTschakertetal.2017, author = {Moser, Othmar and Mueller, Alexander and Tschakert, Gerhard and Koehler, Gerd and Lawrence, Jimmy B. and Groeschl, Werner and Pieber, Thomas R. and Bracken, Richard M. and Hofmann, Peter}, title = {Exercise Prescription in Type 1 Diabetes: Should We Use Percentages of Maximum Heart Rate?}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {49}, journal = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {10.1249/01.mss.0000519798.35679.cf}, pages = {1020 -- 1020}, year = {2017}, language = {en} } @article{WatanabeTohgeBalazadehetal.2018, author = {Watanabe, Mutsumi and Tohge, Takayuki and Balazadeh, Salma and Erban, Alexander and Giavalisco, Patrick and Kopka, Joachim and Mueller-Roeber, Bernd and Fernie, Alisdair R. and Hoefgen, Rainer}, title = {Comprehensive Metabolomics Studies of Plant Developmental Senescence}, series = {Plant Senescence: Methods and Protocols}, volume = {1744}, journal = {Plant Senescence: Methods and Protocols}, publisher = {Humana Press}, address = {Totowa}, isbn = {978-1-4939-7672-0}, issn = {1064-3745}, doi = {10.1007/978-1-4939-7672-0_28}, pages = {339 -- 358}, year = {2018}, abstract = {Leaf senescence is an essential developmental process that involves diverse metabolic changes associated with degradation of macromolecules allowing nutrient recycling and remobilization. In contrast to the significant progress in transcriptomic analysis of leaf senescence, metabolomics analyses have been relatively limited. A broad overview of metabolic changes during leaf senescence including the interactions between various metabolic pathways is required to gain a better understanding of the leaf senescence allowing to link transcriptomics with metabolomics and physiology. In this chapter, we describe how to obtain comprehensive metabolite profiles and how to dissect metabolic shifts during leaf senescence in the model plant Arabidopsis thaliana. Unlike nucleic acid analysis for transcriptomics, a comprehensive metabolite profile can only be achieved by combining a suite of analytic tools. Here, information is provided for measurements of the contents of chlorophyll, soluble proteins, and starch by spectrophotometric methods, ions by ion chromatography, thiols and amino acids by HPLC, primary metabolites by GC/TOF-MS, and secondary metabolites and lipophilic metabolites by LC/ESI-MS. These metabolite profiles provide a rich catalogue of metabolic changes during leaf senescence, which is a helpful database and blueprint to be correlated to future studies such as transcriptome and proteome analyses, forward and reverse genetic studies, or stress-induced senescence studies.}, language = {en} }