@misc{MotaCoelhoLeimkuehleretal.2018, author = {Mota, Cristiano and Coelho, Catarina and Leimk{\"u}hler, Silke and Garattini, Enrico and Terao, Mineko and Santos-Silva, Teresa and Romao, Maria Joao}, title = {Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics}, series = {Coordination chemistry reviews}, volume = {368}, journal = {Coordination chemistry reviews}, publisher = {Elsevier}, address = {Lausanne}, issn = {0010-8545}, doi = {10.1016/j.ccr.2018.04.006}, pages = {35 -- 59}, year = {2018}, abstract = {Aldehyde oxidases are molybdenum and flavin dependent enzymes characterized by a very wide substrate specificity and performing diverse reactions that include oxidations (e.g., aldehydes and azaheterocycles), hydrolysis of amide bonds, and reductions (e.g., nitro, S-oxides and N-oxides). Oxidation reactions and amide hydrolysis occur at the molybdenum site while the reductions are proposed to occur at the flavin site. AOX activity affects the metabolism of different drugs and xenobiotics, some of which designed to resist other liver metabolizing enzymes (e.g., cytochrome P450 monooxygenase isoenzymes), raising its importance in drug development. This work consists of a comprehensive overview on aldehyde oxidases, concerning the genetic evolution of AOX, its diversity among the human population, the crystal structures available, the known catalytic reactions and the consequences in pre-clinical pharmacokinetic and pharmacodynamic studies. Analysis of the different animal models generally used for pre-clinical trials and comparison between the human (hAOX1), mouse homologs as well as the related xanthine oxidase (XOR) are extensively considered. The data reviewed also include a systematic analysis of representative classes of molecules that are hAOX1 substrates as well as of typical and well characterized hAOX1 inhibitors. The considerations made on the basis of a structural and functional analysis are correlated with reported kinetic and metabolic data for typical classes of drugs, searching for potential structural determinants that may dictate substrate and/or inhibitor specificities.}, language = {en} } @article{MotaEsmaeeliMoghaddamTabalvandaniCoelhoetal.2019, author = {Mota, Cristiano and Esmaeeli Moghaddam Tabalvandani, Mariam and Coelho, Catarina and Santos-Silva, Teresa and Wolff, Martin and Foti, Alessandro and Leimk{\"u}hler, Silke and Romao, Maria Joao}, title = {Human aldehyde oxidase (hAOX1)}, series = {FEBS Open Bio}, volume = {9}, journal = {FEBS Open Bio}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {2211-5463}, doi = {10.1002/2211-5463.12617}, pages = {925 -- 934}, year = {2019}, abstract = {Human aldehyde oxidase (hAOX1) is a molybdenum enzyme with high toxicological importance, but its physiological role is still unknown. hAOX1 metabolizes different classes of xenobiotics and is one of the main drug-metabolizing enzymes in the liver, along with cytochrome P450. hAOX1 oxidizes and inactivates a large number of drug molecules and has been responsible for the failure of several phase I clinical trials. The interindividual variability of drug-metabolizing enzymes caused by single nucleotide polymorphisms (SNPs) is highly relevant in pharmaceutical treatments. In this study, we present the crystal structure of the inactive variant G1269R, revealing the first structure of a molybdenum cofactor (Moco)-free form of hAOX1. These data allowed to model, for the first time, the flexible Gate 1 that controls access to the active site. Furthermore, we inspected the thermostability of wild-type hAOX1 and hAOX1 with various SNPs (L438V, R1231H, G1269R or S1271L) by CD spectroscopy and ThermoFAD, revealing that amino acid exchanges close to the Moco site can impact protein stability up to 10 degrees C. These results correlated with biochemical and structural data and enhance our understanding of hAOX1 and the effect of SNPs in the gene encoding this enzyme in the human population. EnzymesAldehyde oxidase (); xanthine dehydrogenase (); xanthine oxidase (). DatabasesStructural data are available in the Protein Data Bank under the accession number .}, language = {en} } @article{DeSousaMotaDinizCoelhoetal.2021, author = {De Sousa Mota, Cristiano and Diniz, Ana and Coelho, Catarina and Santos-Silva, Teresa and Esmaeeli Moghaddam Tabalvandani, Mariam and Leimk{\"u}hler, Silke and Cabrita, Eurico J. and Marcelo, Filipa and Rom{\~a}o, Maria Jo{\~a}o}, title = {Interrogating the inhibition mechanisms of human aldehyde oxidase by X-ray crystallography and NMR spectroscopy}, series = {Journal of medicinal chemistry / American Chemical Society}, volume = {64}, journal = {Journal of medicinal chemistry / American Chemical Society}, number = {17}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-2623}, doi = {10.1021/acs.jmedchem.1c01125}, pages = {13025 -- 13037}, year = {2021}, abstract = {Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors-thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug-drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery.}, language = {en} }