@article{NunezValdezEfthimiopoulosTaranetal.2018, author = {Nunez Valdez, Maribel and Efthimiopoulos, Ilias and Taran, Michail and Mueller, Jan and Bykova, Elena and McCammon, Catherine and Koch-M{\"u}ller, Monika and Wilke, Max}, title = {Evidence for a pressure-induced spin transition in olivine-type LiFePO4 triphylite}, series = {Physical review : B, Condensed matter and materials physics}, volume = {97}, journal = {Physical review : B, Condensed matter and materials physics}, number = {18}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.97.184405}, pages = {9}, year = {2018}, abstract = {We present a combination of first-principles and experimental results regarding the structural and magnetic properties of olivine-type LiFePO4 under pressure. Our investigations indicate that the starting Pbnm phase of LiFePO4 persists up to 70 GPa. Further compression leads to an isostructural transition in the pressure range of 70-75 GPa, inconsistent with a former theoretical study. Considering our first-principles prediction for a high-spin to low-spin transition of Fe2+ close to 72 GPa, we attribute the experimentally observed isostructural transition to a change in the spin state of Fe2+ in LiFePO4. Compared to relevant Fe-bearing minerals, LiFePO4 exhibits the largest onset pressure for a pressure-induced spin state transition.}, language = {en} } @article{TaranNunezValdezEfthimiopoulosetal.2019, author = {Taran, Michail N. and Nunez Valdez, Maribel and Efthimiopoulos, Ilias and M{\"u}ller, J. and Reichmann, Hans-Josef and Wilke, Max and Koch-M{\"u}ller, Monika}, title = {Spectroscopic and ab initio studies of the pressure-induced Fe2+ high-spin-to-low-spin electronic transition in natural triphylite-lithiophilite}, series = {Physics and Chemistry of Minerals}, volume = {46}, journal = {Physics and Chemistry of Minerals}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0342-1791}, doi = {10.1007/s00269-018-1001-y}, pages = {245 -- 258}, year = {2019}, abstract = {Using optical absorption and Raman spectroscopic measurements, in conjunction with the first-principles calculations, a pressure-induced high-spin (HS)-to-low-spin (LS) state electronic transition of Fe2+ (M2-octahedral site) was resolved around 76-80GPa in a natural triphylite-lithiophilite sample with chemical composition (LiFe0.7082+Mn0.292PO4)-Li-M1-Fe-M2 (theoretical composition (LiFe0.52+Mn0.5PO4)-Li-M1-Fe-M2). The optical absorption spectra at ambient conditions consist of a broad doublet band with two constituents (1) (similar to 9330cm(-1)) and (2) (similar to 7110cm(-1)), resulting from the electronic spin-allowed transition (T2gEg)-T-5-E-5 of octahedral (HSFe2+)-Fe-M2. Both (1) and (2) bands shift non-linearly with pressure to higher energies up to similar to 55GPa. In the optical absorption spectrum measured at similar to 81GPa, the aforementioned HS-related bands disappear, whereas a new broadband with an intensity maximum close to 16,360cm(-1) appears, superimposed on the tail of the high-energy ligand-to-metal O2-Fe2+ charge-transfer absorption edge. We assign this new band to the electronic spin-allowed dd-transition (1)A(1g)(1)T(1g) of LS Fe2+ in octahedral coordination. The high-pressure Raman spectra evidence the Fe2+ HS-to-LS transition mainly from the abrupt shift of the P-O symmetric stretching modes to lower frequencies at similar to 76GPa, the highest pressure achieved in the Raman spectroscopic experiments. Calculations indicated that the presence of Mn-M2(2+) simply shifts the isostructural HS-to-LS transition to higher pressures compared to the triphylite Fe-M2(2+) end-member, in qualitative agreement with our experimental observations.}, language = {en} } @misc{ZimmermannWilkeHornConradetal.2020, author = {Zimmermann, Matthias and Wilke, Monika and Horn-Conrad, Antje and Kampe, Heike and Scholz, Jana}, title = {Portal Wissen = Energy}, editor = {Engel, Silke and Zimmermann, Matthias}, organization = {University of Potsdam, Press and Public Relations Department}, issn = {2198-9974}, doi = {10.25932/publishup-47297}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472978}, pages = {58}, year = {2020}, abstract = {Energy - there is something to it. There is, of course, the matter-of-fact definition in every student encyclopedia: "the capacity to do mechanical work, transfer heat, or emit light." In this way, energy accompanies us, often undetected, all day long: getting out of bed, turning on the heat, switching on the lights, taking a hot shower, getting dressed, making coffee, having breakfast - before we have even left the house, we have already released, transformed, applied, and refueled a lot of energy. And we haven't even worked, at least not in the traditional sense. But energy is not just a physical quantity that, due to its omnipresence, plays a key role in every natural science discipline, such as biology and chemistry, but also in almost every technical field. It is also indispensable when it comes to how we understand and describe our world and our activities - and it has been for a long time. How about an example? The Greek philosopher Aristotle was the first to speak of en{\´e}rgeia, for him a rather nonphysical thing, a living "reality and effectiveness " - that which makes the possible real. About 2,100 years later, the uncrowned king of German literature Johann Wolfgang von Goethe declared it to be a humanistic essence. "What can we call our own if not energy, strength, and will!" And for his contemporary Wilhelm von Humboldt, energy "was the human's first and only virtue". Although physics began to dominate the concept of energy when it became the leading science in the 19th century, energy remained significant in many areas. Reason enough for us to take a look at energy-related matters at the University of Potsdam. We found them in a wide range of disciplines: While Iranian physicist Safa Shoaee is researching how organic materials can be used to manufacture the solar cells of the future, Swedish environmental researcher Johan Lilliestam is focusing on the different dimensions of the energy transition to learn what makes it successful. Slavicist Susanne Str{\"a}tling, on the other hand, crosses the boundaries of her discipline as she examines a complex conceptual history and tries to find out why energy electrifies us today more than ever. And physicist Markus G{\"u}hr is able to use ultrashort flashes of light to investigate how molecules change under its influence and convert energy in the process. Of course, we have enough energy to highlight the diversity of research at the University of Potsdam besides the feature topic of this issue. A cognitive researcher, for example, explains why our brain processes both music and language according to its own respective rhythm, while an environmental researcher presents a method that uses particles from outer space to measure soil moisture. Educational researchers have also launched a study on hate speech in schools and we introduce a palaeoclimatologist who is one of twelve researchers in the new postdoc program at the University of Potsdam. We have spared no energy!}, language = {en} } @article{SieberWilkeAppeltetal.2022, author = {Sieber, Melanie J. and Wilke, Max and Appelt, Oona and Oelze, Marcus and Koch-M{\"u}ller, Monika}, title = {Melting relations of Ca-Mg carbonates and trace element signature of carbonate melts up to 9 GPa - a proxy for melting of carbonated mantle lithologies}, series = {European journal of mineralogy}, volume = {34}, journal = {European journal of mineralogy}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {0935-1221}, doi = {10.5194/ejm-34-411-2022}, pages = {411 -- 424}, year = {2022}, abstract = {The most profound consequences of the presence of Ca-Mg carbonates (CaCO3-MgCO3) in the Earth's upper mantle may be to lower the melting temperatures of the mantle and control the melt composition. Low-degree partial melting of a carbonate-bearing mantle produces CO2-rich, silica-poor melts compositionally imposed by the melting relations of carbonates. Thus, understanding the melting relations in the CaCO3-MgCO3 system facilitates the interpretation of natural carbonate-bearing silicate systems. We report the melting relations of the CaCO3-MgCO3 system and the partition coefficient of trace elements between carbonates and carbonate melt from experiments at high pressure (6 and 9 GPa) and temperature (1300-1800 degrees C) using a rocking multi-anvil press. In the absence of water, Ca-Mg carbonates are stable along geothermal gradients typical of subducting slabs. Ca-Mg carbonates ( similar to Mg0.1-0.9Ca0.9-0.1CO3) partially melt beneath mid-ocean ridges and in plume settings. Ca-Mg carbonates melt incongruently, forming periclase crystals and carbonate melt between 4 and 9 GPa. Furthermore, we show that the rare earth element (REE) signature of Group-I kimberlites, namely strong REE fractionation and depletion of heavy REE relative to the primitive mantle, is resembled by carbonate melt in equilibrium with Ca-bearing magnesite and periclase at 6 and 9 GPa. This suggests that the dolomite-magnesite join of the CaCO3-MgCO3 system might be useful to approximate the REE signature of carbonate-rich melts parental to kimberlites.}, language = {en} }