@article{SardarianInalooModarresiAlametal.2019, author = {Sardarian, Ali Reza and Inaloo, Iman Dindarloo and Modarresi-Alam, Ali Reza and Kleinpeter, Erich and Schilde, Uwe}, title = {Metal-Free Regioselective Monocyanation of Hydroxy-, Alkoxy-, and Benzyloxyarenes by Potassium Thiocyanate and Silica Sulfuric Acid as a Cyanating Agent}, series = {The journal of organic chemistry}, volume = {84}, journal = {The journal of organic chemistry}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/acs.joc.8b02191}, pages = {1748 -- 1756}, year = {2019}, abstract = {A novel and efficient metal- and solvent-free regioselective para-C-H cyanation of hydroxy-, alkoxy-, and benzyloxyarene derivatives has been introduced, using nontoxic potassium thiocyanate as a cyanating reagent in the presence of silica sulfuric acid (SSA). The desired products are obtained in good to high yields without any toxic byproducts.}, language = {en} } @article{ModarresiAlamKhamooshiRostamizadehetal.2007, author = {Modarresi-Alam, Ali Reza and Khamooshi, Ferydoon and Rostamizadeh, Mohsen and Keykha, Hossein and Nasrollahzahdeh, Mahmoud and Bijanzadeh, Hamid-Reza and Kleinpeter, Erich}, title = {Dynamic 1H NMR spectroscopic study of the restricted S-N rotation in aryl-N-(arylsulfonyl)-N- (triphenylphosphoranylidene)imidocarbamates}, year = {2007}, abstract = {Dynamic 1H NMR (500 MHz) investigation of aryl-N-(arylsulfonyl)-N-(triphenylphosphoranylidene)imidocarbamates in CDCl3, CD3COCD3, and CD3OD at the temperature range of 183-298 K is reported. The observed free energy barriers (almost 12 kcal mol;1) are attributed to conformational isomerization about the N{\`u}S bond and these barriers show very little solvent dependence.}, language = {en} } @article{ModarresiAlamAlsadatAmiraziziBagherietal.2009, author = {Modarresi-Alam, Ali Reza and Alsadat Amirazizi, Homeyra and Bagheri, Hajar and Bijanzadeh, Hamid-Reza and Kleinpeter, Erich}, title = {Dynamic 1H NMR spectroscopic study of the ring inversion in N-sulfonyl morpholines-studies on N-S interactions}, issn = {0022-3263}, year = {2009}, abstract = {The effect of the exocyclic conjugation, via d;p orbital interaction and/or negative hyperconjugation (anomeric effect) of the N;S bond, on the inversion of the morpholine ring in some N-arylsulfonyl morpholines is studied by variable-temperature 1H NMR spectroscopy in different solvents. The observed free energy barriers are 9.2;10.3 kcal mol;1; the lower values were obtained with increasing conjugation (substituents of higher electron withdrawing power) along the series. The barrier to ring inversion of 1e was solvent independent. X-ray data of compounds 1b,d reveal the chair conformation of the six-membered ring, the flattened pyramidal orientation of the ring nitrogen atom, and the sulfonyl group in equatorial position with the plane containing the Caryl;S;N bond perpendicular to the plane of the benzene ring. In addition, the sulfonamide group prefers a conformation with the S;C bond antiperiplanar with respect to the nitrogen atom lone pair and the ;CH2;N;CH2; moieties in staggered conformation with the S;O bonds of the SO2 group.}, language = {en} } @article{ModarresiAlamAmiraziziBagherietal.2009, author = {Modarresi-Alam, Ali Reza and Amirazizi, Homeyra Alsadat and Bagheri, Hajar and Bijanzadeh, Hamid-Reza and Kleinpeter, Erich}, title = {Dynamic H-1 NMR spectroscopic study of the ring inversion in N-sulfonyl morpholines : studies on N-S interactions}, issn = {0022-3263}, doi = {10.1021/Jo900454a}, year = {2009}, abstract = {The effect of the exocyclic conjugation, via d-p orbital interaction and/or negative hyperconjugation (anomeric effect) of the N-S bond, on the inversion of the morpholine ring in some N-arylsulfonyl morpholines is studied by variable-temperature H-1 NMR spectroscopy in different solvents. The observed free energy barriers are 9.2-10.3 kcal mol(-1); the lower values were obtained with increasing conjugation (substituents of higher electron withdrawing power) along the series. The barrier to ring inversion of le was solvent independent. X-ray data of compounds 1b,d reveal the chair conformation of the six-membered ring the flattened pyramidal orientation of the ring nitrogen atom, and the sulfonyl group in equatorial position with the plane containing the C-aryl-S-N bond perpendicular to the plane of the benzene ring. In addition, the sulfonamide group prefers a conformation with the S-C bond antiperiplanar with respect to the nitrogen atom lone pair and the -CH2-N-CH2- moieties in staggered conformation with the S-O bonds of the SO2 group.}, language = {en} } @article{KleinpeterModarresiAlamInaloo2012, author = {Kleinpeter, Erich and Modarresi-Alam, Ali Reza and Inaloo, Iman Dindarloo}, title = {Synthesis of primary thiocarbamates by silica sulfuric acid as effective reagent under solid-state and solution conditions}, issn = {0022-2860}, year = {2012}, abstract = {A simple and efficient method for the conversion of alcohols and phenols to primary O-thiocarbamates and S- thiocarbamates in the absence of solvent (solvent-free condition) using silica sulfuric acid (SiO2OSO3H) as a solid acid is described. The products are easily distinguished by IR, NMR and X-ray data. X-ray data of the compounds reveal a planar trigonal orientation of the NH2 nitrogen atom with the partial C,N double-bond character and the CS or CO groups in synperiplanar position with CarylO and CalkylS moieties, respectively. Moreover, the OCSNH2 group which is perpendicular to the plane of the benzene ring in 1c and the central thiocarbamate SCONH2 group in 2b are essentially planar.}, language = {en} } @article{ModarresiAlamInalooKleinpeter2012, author = {Modarresi-Alam, Ali Reza and Inaloo, Iman Dindarloo and Kleinpeter, Erich}, title = {Synthesis of primary thiocarbamates by silica sulfuric acid as effective reagent under solid-state and solution conditions}, series = {Journal of molecular structure}, volume = {1024}, journal = {Journal of molecular structure}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-2860}, doi = {10.1016/j.molstruc.2012.05.033}, pages = {156 -- 162}, year = {2012}, abstract = {A simple and efficient method for the conversion of alcohols and phenols to primary O-thiocarbamates and S-thiocarbamates in the absence of solvent (solvent-free condition) using silica sulfuric acid (equivalent to SiO2-OSO3H) as a solid acid is described. The products are easily distinguished by IR, NMR and X-ray data. X-ray data of the compounds reveal a planar trigonal orientation of the NH2 nitrogen atom with the partial C,N double-bond character and the C=S or C=O groups in synperiplanar position with C-aryl-O and C-alkyl-S moieties, respectively. Moreover, the -O-CS-NH2 group which is perpendicular to the plane of the benzene ring in 1c and the central thiocarbamate -S-CO-NH2 group in 2b are essentially planar.}, language = {en} } @article{MovahedifarModarresiAlamKleinpeteretal.2017, author = {Movahedifar, Fahimeh and Modarresi-Alam, Ali Reza and Kleinpeter, Erich and Schilde, Uwe}, title = {Dynamic H-1-NMR study of unusually high barrier to rotation about the partial C-N double bond in N,N-dimethyl carbamoyl 5-aryloxytetrazoles}, series = {Journal of molecular structure}, volume = {1133}, journal = {Journal of molecular structure}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-2860}, doi = {10.1016/j.molstruc.2016.12.010}, pages = {244 -- 252}, year = {2017}, abstract = {The synthesis of new N,N-dimethyl carbamoyl 5-aryloxytetrazoles have been reported. Their dynamic H-1-NMR via rotation about C-N bonds in moiety of urea group [a; CO-NMe2 and b; (2-tetrazolyl)N-CO rotations] in the solvents CDCl3 (223-333 K) and DMSO (298-363 K) is studied. Accordingly, the free energies of activation, obtained 16.5 and 16.9 kcal mol(-1) respectively, attributed to the conformational isomerization about the Me2N-C=O bond (a rotation). Moreover, a and b barrier to rotations in 5-((4-methylphenoxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide (P) also were computed at level of B3LYP using 6-311++G** basis set. The optimized geometry parameters are in good agreement with X-ray structure data. The computation of energy barrier for a and b was determined 16.9 and 2.5 kcal mol(-1), respectively. The former is completely in agreement with the result obtained via dynamic NMR. X-ray structure analysis data demonstrate that just 2-acylated tetrazole was formed in the case of 5-(p-tolyloxy)-N,N-dimethyl-2H-tetrazole-2-carboxamide. X-ray data also revealed a planar trigonal orientation of the Me2N group which is coplanar to carbonyl group with the partial double-bond C-N character. It also demonstrates the synperiplanar position of C=O group with tetrazolyl ring. On average, in solution the plane containing carbonyl bond is almost perpendicular to the plane of the tetrazolyl ring (because of steric effects as confirmed by B3LY12/6-311++G**) while the plane containing Me2N group is coplanar with carbonyl bond which is in contrast with similar urea derivatives and it demonstrates the unusually high rotational energy barrier of these compounds. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} }