@article{MuellerTjallingiiPlocienniketal.2021, author = {M{\"u}ller, Daniela and Tjallingii, Rik and Plociennik, Mateusz and Luoto, Tomi P. and Kotrys, Bartosz and Plessen, Birgit and Ramisch, Arne and Schwab, Markus Julius and Blaszkiewicz, Miroslaw and Slowinski, Michal and Brauer, Achim}, title = {New insights into lake responses to rapid climate change}, series = {Boreas}, volume = {50}, journal = {Boreas}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0300-9483}, doi = {10.23689/fidgeo-4033}, pages = {535 -- 555}, year = {2021}, abstract = {The sediment profile from Lake Goscia(z) over dot in central Poland comprises a continuous, seasonally resolved and exceptionally well-preserved archive of the Younger Dryas (YD) climate variation. This provides a unique opportunity for detailed investigation of lake system responses during periods of rapid climate cooling (YD onset) and warming (YD termination). The new varve record of Lake Goscia(z) over dot presented here spans 1662 years from the late Allerod (AL) to the early Preboreal (PB). Microscopic varve counting provides an independent chronology with a YD duration of 1149+14/-22 years, which confirms previous results of 1140 +/- 40 years. We link stable oxygen isotopes and chironomid-based air temperature reconstructions with the response of various geochemical and varve microfacies proxies especially focusing on the onset and termination of the YD. Cooling at the YD onset lasted similar to 180 years, which is about a century longer than the terminal warming that was completed in similar to 70 years. During the AL/YD transition, environmental proxy data lagged the onset of cooling by similar to 90 years and revealed an increase of lake productivity and internal lake re-suspension as well as slightly higher detrital sediment input. In contrast, rapid warming and environmental changes during the YD/PB transition occurred simultaneously. However, initial changes such as declining diatom deposition and detrital input occurred already a few centuries before the rapid warming at the YD/PB transition. These environmental changes likely reflect a gradual increase in summer air temperatures already during the YD. Our data indicate complex and differing environmental responses to the major climate changes related to the YD, which involve different proxy sensitivities and threshold processes.}, language = {en} } @misc{MuellerTjallingiiPlocienniketal.2021, author = {M{\"u}ller, Daniela and Tjallingii, Rik and Plociennik, Mateusz and Luoto, Tomi P. and Kotrys, Bartosz and Plessen, Birgit and Ramisch, Arne and Schwab, Markus Julius and Blaszkiewicz, Miroslaw and Slowinski, Michal and Brauer, Achim}, title = {New insights into lake responses to rapid climate change}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {0300-9483}, doi = {10.25932/publishup-56338}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563386}, pages = {23}, year = {2021}, abstract = {The sediment profile from Lake Goscia(z) over dot in central Poland comprises a continuous, seasonally resolved and exceptionally well-preserved archive of the Younger Dryas (YD) climate variation. This provides a unique opportunity for detailed investigation of lake system responses during periods of rapid climate cooling (YD onset) and warming (YD termination). The new varve record of Lake Goscia(z) over dot presented here spans 1662 years from the late Allerod (AL) to the early Preboreal (PB). Microscopic varve counting provides an independent chronology with a YD duration of 1149+14/-22 years, which confirms previous results of 1140 +/- 40 years. We link stable oxygen isotopes and chironomid-based air temperature reconstructions with the response of various geochemical and varve microfacies proxies especially focusing on the onset and termination of the YD. Cooling at the YD onset lasted similar to 180 years, which is about a century longer than the terminal warming that was completed in similar to 70 years. During the AL/YD transition, environmental proxy data lagged the onset of cooling by similar to 90 years and revealed an increase of lake productivity and internal lake re-suspension as well as slightly higher detrital sediment input. In contrast, rapid warming and environmental changes during the YD/PB transition occurred simultaneously. However, initial changes such as declining diatom deposition and detrital input occurred already a few centuries before the rapid warming at the YD/PB transition. These environmental changes likely reflect a gradual increase in summer air temperatures already during the YD. Our data indicate complex and differing environmental responses to the major climate changes related to the YD, which involve different proxy sensitivities and threshold processes.}, language = {en} } @article{PłociennikZawiskaRzodkiewiczetal.2022, author = {Pł{\´o}ciennik, Mateusz and Zawiska, Izabela and Rzodkiewicz, Monika and Noryśkiewicz, Agnieszka M. and Słowiński, Michał and M{\"u}ller, Daniela and Brauer, Achim and Antczak-Orlewska, Olga and Kramkowski, Mateusz and Peyron, Odile and Nevalainen, Liisa and Luoto, Tomi P. and Kotrys, Bartosz and Sepp{\"a}, Heikki and Bidaurreta, Jon Camuera and Rudna, Marta and Mielczarek, Małgorzata and Zawisza, Edyta and Janowska, Ewa and Błaszkiewicz, Mirosław}, title = {Climatic and hydrological variability as a driver of the Lake Gościąż biota during the Younger Dryas}, series = {Catena}, volume = {212}, journal = {Catena}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2022.106049}, pages = {15}, year = {2022}, abstract = {The Younger Dryas (YD) is a roughly 1,100-year cold period marking the end of the last glaciation. Climate modelling for northern Europe indicates high summer temperatures and strong continentality. In eastern Europe, the scale of temperature variation and its influence on ecosystems is weakly recognised. Here, we present a multi-proxy reconstruction of YD conditions from Lake Gos ' ciaz (central Poland). The decadal-resolution analysis of its annually varved sediments indicates an initial decrease in Chironomidae-inferred mean July air temperature followed by steady warming. The pollen-inferred winter-to-summer temperature amplitude and annual precip-itation is highest at the Allerod/YD transition and the early YD (ca. 12.7-12.4 ky cal BP) and YD/Holocene (11.7-11.4 ka cal BP) transition. Temperature and precipitation were the main reasons for lake level fluctuations as reflected in the planktonic/littoral Cladocera ratio. The lake's diatom-inferred total phosphorus decreased with increasing summer temperature from about mid YD. Windy conditions in the early YD until ~12.3 ka cal BP caused water mixing and a short-lived/temporary increase in nutrient availability for phytoplankton. The Chironomidae-inferred summer temperature and pollen inferred summer temperature, winter temperature and annual precipitation herein are one of only a few in eastern Europe conducted with such high resolution.}, language = {en} }