@article{ParkZaksKurths1999, author = {Park, Eun Hyoung and Zaks, Michael A. and Kurths, J{\"u}rgen}, title = {Phase synchronization in the forced lorenz system}, year = {1999}, language = {en} } @article{ZaksPikovskij2017, author = {Zaks, Michael and Pikovskij, Arkadij}, title = {Chimeras and complex cluster states in arrays of spin-torque oscillators}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-04918-9}, pages = {10}, year = {2017}, abstract = {We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.}, language = {en} } @article{ZaksPikovskij2019, author = {Zaks, Michael A. and Pikovskij, Arkadij}, title = {Synchrony breakdown and noise-induced oscillation death in ensembles of serially connected spin-torque oscillators}, series = {The European physical journal : B, Condensed matter and complex systems}, volume = {92}, journal = {The European physical journal : B, Condensed matter and complex systems}, number = {7}, publisher = {Springer}, address = {New York}, issn = {1434-6028}, doi = {10.1140/epjb/e2019-100152-2}, pages = {12}, year = {2019}, abstract = {We consider collective dynamics in the ensemble of serially connected spin-torque oscillators governed by the Landau-Lifshitz-Gilbert-Slonczewski magnetization equation. Proximity to homoclinicity hampers synchronization of spin-torque oscillators: when the synchronous ensemble experiences the homoclinic bifurcation, the growth rate per oscillation of small deviations from the ensemble mean diverges. Depending on the configuration of the contour, sufficiently strong common noise, exemplified by stochastic oscillations of the current through the circuit, may suppress precession of the magnetic field for all oscillators. We derive the explicit expression for the threshold amplitude of noise, enabling this suppression.}, language = {en} } @unpublished{PikovskijZaksFeudeletal.1995, author = {Pikovskij, Arkadij and Zaks, Michael A. and Feudel, Ulrike and Kurths, J{\"u}rgen}, title = {Singular continuous spectra in dissipative dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13787}, year = {1995}, abstract = {We demonstrate the occurrence of regimes with singular continuous (fractal) Fourier spectra in autonomous dissipative dynamical systems. The particular example in an ODE system at the accumulation points of bifurcation sequences associated to the creation of complicated homoclinic orbits. Two different machanisms responsible for the appearance of such spectra are proposed. In the first case when the geometry of the attractor is symbolically represented by the Thue-Morse sequence, both the continuous-time process and its descrete Poincar{\´e} map have singular power spectra. The other mechanism owes to the logarithmic divergence of the first return times near the saddle point; here the Poincar{\´e} map possesses the discrete spectrum, while the continuous-time process displays the singular one. A method is presented for computing the multifractal characteristics of the singular continuous spectra with the help of the usual Fourier analysis technique.}, language = {en} } @article{ZaksPikovskijKurths1999, author = {Zaks, Michael A. and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {On the generalized dimensions for the fourier spectrum of the thue-morse sequence}, year = {1999}, language = {en} } @article{ZaksPikovskijKurths1998, author = {Zaks, Michael A. and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {Symbolic dynamics behind the singular continuous power spectra of continuous flows}, year = {1998}, language = {en} } @article{ZaksPikovskijKurths1997, author = {Zaks, Michael A. and Pikovskij, Arkadij and Kurths, J{\"u}rgen}, title = {On the correlation dimension of the spectral measure for the Thue-Morse sequence}, year = {1997}, language = {en} } @misc{ZaksPikovskij2017, author = {Zaks, Michael A. and Pikovskij, Arkadij}, title = {Chimeras and complex cluster states in arrays of spin-torque oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402180}, pages = {10}, year = {2017}, abstract = {We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.}, language = {en} } @article{ZaksPikovskij2017, author = {Zaks, Michael A. and Pikovskij, Arkadij}, title = {Chimeras and complex cluster states in arrays of spin-torque oscillators}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-04918-9}, year = {2017}, abstract = {We consider synchronization properties of arrays of spin-torque nano-oscillators coupled via an RC load. We show that while the fully synchronized state of identical oscillators may be locally stable in some parameter range, this synchrony is not globally attracting. Instead, regimes of different levels of compositional complexity are observed. These include chimera states (a part of the array forms a cluster while other units are desynchronized), clustered chimeras (several clusters plus desynchronized oscillators), cluster state (all oscillators form several clusters), and partial synchronization (no clusters but a nonvanishing mean field). Dynamically, these states are also complex, demonstrating irregular and close to quasiperiodic modulation. Remarkably, when heterogeneity of spin-torque oscillators is taken into account, dynamical complexity even increases: close to the onset of a macroscopic mean field, the dynamics of this field is rather irregular.}, language = {en} } @article{PoeschkeSokolovNepomnyashchyetal.2016, author = {Poeschke, Patrick and Sokolov, Igor M. and Nepomnyashchy, Alexander A. and Zaks, Michael A.}, title = {Anomalous transport in cellular flows: The role of initial conditions and aging}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {94}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.94.032128}, pages = {7}, year = {2016}, abstract = {We consider the diffusion-advection problem in two simple cellular flow models ( often invoked as examples of subdiffusive tracer motion) and concentrate on the intermediate time range, in which the tracer motion indeed may show subdiffusion. We perform extensive numerical simulations of the systems under different initial conditions and show that the pure intermediate-time subdiffusion regime is only evident when the particles start at the border between different cells, i.e., at the separatrix, and is less pronounced or absent for other initial conditions. The motion moreover shows quite peculiar aging properties, which are also mirrored in the behavior of the time-averaged mean squared displacement for single trajectories. This kind of behavior is due to the complex motion of tracers trapped inside the cell and is absent in classical models based on continuous-time random walks with no dynamics in the trapped state.}, language = {en} }