@misc{GarbusowNebeSommeretal.2019, author = {Garbusow, Maria and Nebe, Stephan and Sommer, Christian and Kuitunen-Paul, S{\"o}ren and Sebold, Miriam Hannah and Schad, Daniel and Friedel, Eva and Veer, Ilya M. and Wittchen, Hans-Ulrich and Rapp, Michael Armin and Ripke, Stephan and Walter, Henrik and Huys, Quentin J. M. and Schlagenhauf, Florian and Smolka, Michael N. and Heinz, Andreas}, title = {Pavlovian-To-Instrumental Transfer and Alcohol Consumption in Young Male Social Drinkers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {841}, issn = {1866-8364}, doi = {10.25932/publishup-47328}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473280}, pages = {14}, year = {2019}, abstract = {In animals and humans, behavior can be influenced by irrelevant stimuli, a phenomenon called Pavlovian-to-instrumental transfer (PIT). In subjects with substance use disorder, PIT is even enhanced with functional activation in the nucleus accumbens (NAcc) and amygdala. While we observed enhanced behavioral and neural PIT effects in alcohol-dependent subjects, we here aimed to determine whether behavioral PIT is enhanced in young men with high-risk compared to low-risk drinking and subsequently related functional activation in an a-priori region of interest encompassing the NAcc and amygdala and related to polygenic risk for alcohol consumption. A representative sample of 18-year old men (n = 1937) was contacted: 445 were screened, 209 assessed: resulting in 191 valid behavioral, 139 imaging and 157 genetic datasets. None of the subjects fulfilled criteria for alcohol dependence according to the Diagnostic and Statistical Manual of Mental Disorders-IV-TextRevision (DSM-IV-TR). We measured how instrumental responding for rewards was influenced by background Pavlovian conditioned stimuli predicting action-independent rewards and losses. Behavioral PIT was enhanced in high-compared to low-risk drinkers (b = 0.09, SE = 0.03, z = 2.7, p < 0.009). Across all subjects, we observed PIT-related neural blood oxygen level-dependent (BOLD) signal in the right amygdala (t = 3.25, p(SVC) = 0.04, x = 26, y = -6, z = -12), but not in NAcc. The strength of the behavioral PIT effect was positively correlated with polygenic risk for alcohol consumption (r(s) = 0.17, p = 0.032). We conclude that behavioral PIT and polygenic risk for alcohol consumption might be a biomarker for a subclinical phenotype of risky alcohol consumption, even if no drug-related stimulus is present. The association between behavioral PIT effects and the amygdala might point to habitual processes related to out PIT task. In non-dependent young social drinkers, the amygdala rather than the NAcc is activated during PIT; possible different involvement in association with disease trajectory should be investigated in future studies.}, language = {en} } @misc{GiraudierVenturaBortBurgeretal.2022, author = {Giraudier, Manon and Ventura-Bort, Carlos and Burger, Andreas M. and Claes, Nathalie and D'Agostini, Martina and Fischer, Rico and Franssen, Mathijs and Kaess, Michael and Koenig, Julian and Liepelt, Roman and Nieuwenhuis, Sander and Sommer, Aldo and Usichenko, Taras and Van Diest, Ilse and von Leupoldt, Andreas and Warren, Christopher Michael and Weymar, Mathias}, title = {Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {808}, issn = {1866-8364}, doi = {10.25932/publishup-57766}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577668}, pages = {1378 -- 1388}, year = {2022}, abstract = {Background Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) has received tremendous attention as a potential neuromodulator of cognitive and affective functions, which likely exerts its effects via activation of the locus coeruleus-noradrenaline (LC-NA) system. Reliable effects of taVNS on markers of LC-NA system activity, however, have not been demonstrated yet. Methods The aim of the present study was to overcome previous limitations by pooling raw data from a large sample of ten taVNS studies (371 healthy participants) that collected salivary alpha-amylase (sAA) as a potential marker of central NA release. Results While a meta-analytic approach using summary statistics did not yield any significant effects, linear mixed model analyses showed that afferent stimulation of the vagus nerve via taVNS increased sAA levels compared to sham stimulation (b = 0.16, SE = 0.05, p = 0.001). When considering potential confounders of sAA, we further replicated previous findings on the diurnal trajectory of sAA activity. Conclusion(s) Vagal activation via taVNS increases sAA release compared to sham stimulation, which likely substantiates the assumption that taVNS triggers NA release. Moreover, our results highlight the benefits of data pooling and data sharing in order to allow stronger conclusions in research.}, language = {en} } @inproceedings{Sommer2006, author = {Sommer, Michael}, title = {Nicht-invasive Methoden in der Bodenlandschaftsforschung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7117}, year = {2006}, abstract = {Der Referent ist Leiter des Institutes f{\"u}r Bodenlandschaftsforschung am Leibniz-Zentrum f{\"u}r Agrarlandschaftsforschung (ZALF) e. V. in M{\"u}ncheberg.}, language = {de} } @misc{KuekenSommerYanevaRoderetal.2018, author = {K{\"u}ken, Anika and Sommer, Frederik and Yaneva-Roder, Liliya and Mackinder, Luke C.M. and H{\"o}hne, Melanie and Geimer, Stefan and Jonikas, Martin C. and Schroda, Michael and Stitt, Mark and Nikoloski, Zoran and Mettler-Altmann, Tabea}, title = {Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1122}, issn = {1866-8372}, doi = {10.25932/publishup-44635}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446358}, pages = {25}, year = {2018}, abstract = {Cells and organelles are not homogeneous but include microcompartments that alter the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM-suppressed cells. We then employed a computational strategy to estimate how fluxes through the Calvin-Benson cycle are compartmented between the pyrenoid and the stroma. Our model predicts that ribulose-1,5-bisphosphate (RuBP), the substrate of Rubisco, and 3-phosphoglycerate (3PGA), its product, diffuse in and out of the pyrenoid, respectively, with higher fluxes in CCM-induced cells. It also indicates that there is no major diffusional barrier to metabolic flux between the pyrenoid and stroma. Our computational approach represents a stepping stone to understanding microcompartmentalized CCM in other organisms.}, language = {en} } @misc{PuppeWannerSommer2018, author = {Puppe, Daniel and Wanner, Manfred and Sommer, Michael}, title = {Data on euglyphid testate amoeba densities, corresponding protozoic silicon pools, and selected soil parameters of initial and forested biogeosystems}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1039}, issn = {1866-8372}, doi = {10.25932/publishup-47116}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471160}, pages = {9}, year = {2018}, abstract = {The dataset in the present article provides information on protozoic silicon (Si) pools represented by euglyphid testate amoebae (TA) in soils of initial and forested biogeosystems. Protozoic Si pools were calculated from densities of euglyphid TA shells and corresponding Si contents. The article also includes data on potential annual biosilicification rates of euglyphid TA at the examined sites. Furthermore, data on selected soil parameters (e.g., readily-available Si, soil pH) and site characteristics (e.g., soil groups, climate data) can be found. The data might be interesting for researchers focusing on biological processes in Si cycling in general and euglyphid TA and corresponding protozoic Si pools in particular.}, language = {en} } @misc{WehrhanRaunekerSommer2016, author = {Wehrhan, Marc and Rauneker, Philipp and Sommer, Michael}, title = {UAV-Based estimation of carbon exports from heterogeneous soil landscapes}, series = {Sensors}, journal = {Sensors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407706}, pages = {24}, year = {2016}, abstract = {The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high spatial resolution of images, temporal flexibility and narrow-band spectral data from different wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental variables, like plant-related carbon dynamics in agricultural landscapes. In this paper, we quantify spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in 2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the Enhanced Vegetation Index (EVI) using near-infrared band b(899). The resulting map was transformed into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability at field- and plot-scale could be attributed to small-scale soil heterogeneity in part.}, language = {en} } @misc{PohlHoffmannHagemannetal.2015, author = {Pohl, Madlen and Hoffmann, M. and Hagemann, Ulrike and Giebels, M. and Albiac Borraz, E. and Sommer, Michael and Augustin, J{\"u}rgen}, title = {Dynamic C and N stocks}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {496}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-408184}, pages = {16}, year = {2015}, abstract = {The drainage and cultivation of fen peatlands create complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater levels (GWLs). To date, the significance of such sites as sources or sinks for greenhouse gases such as CO2 and CH4 is still unclear, especially if the sites are used for cropland. As individual control factors such as GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of the plant- and microbially mediated CO2 fluxes in these soils and, inversely, for CH4. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP; ecosystem respiration - R-eco; net ecosystem exchange - NEE; CH4) of maize using manual chambers for 4 years. The study sites were located near Paulinenaue, Germany, where we selected three soil types representing the full gradient of GWL and SOC stocks (0-1 m) of the landscape: (a) Haplic Arenosol (AR; 8 kg C m(-2)); (b) Mollic Gleysol (GL; 38 kg C m(-2)); and (c) Hemic Histosol (HS; 87 kg C m(-2)). Daily GWL data were used to calculate dynamic SOC (SOCdyn) and N (N-dyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 +/- 30 g C m(-2) yr(-1) in AR to -305 +/- 123 g C m(-2) yr(-1) in GL and -127 +/- 212 g C m(-2) yr(-1) in HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and N-dyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP : R-eco ratio. Moreover, based on nonlinear regression analysis, 86\% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the effects of GWL-dependent N availability on C formation and transformation processes in the plant-soil system, which promote CO2 input via GPP more than CO2 emission via R-eco. The process-oriented approach of dynamic C and N stocks is a promising, potentially generalisable method for system-oriented investigations of the C gas exchange of groundwater-influenced soils and could be expanded to other nutrients and soil characteristics. However, in order to assess the climate impact of arable sites on drained peatlands, it is always necessary to consider the entire range of groundwater-influenced mineral and organic soils and their respective areal extent within the soil landscape.}, language = {en} } @misc{HoffmannSchulzHankeAlbaetal.2017, author = {Hoffmann, Mathias and Schulz-Hanke, Maximilian and Alba, Juana Garcia and Jurisch, Nicole and Hagemann, Ulrike and Sachs, Torsten and Sommer, Michael and Augustin, J{\"u}rgen}, title = {A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition- and diffusion-derived components}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {604}, issn = {1866-8372}, doi = {10.25932/publishup-41665}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416659}, pages = {109 -- 118}, year = {2017}, abstract = {Processes driving the production, transformation and transport of methane (CH4) in wetland ecosystems are highly complex. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components. This helps to reveal underlying dynamics, to identify potential environmental drivers and, thus, to calculate reliable CH4 emission estimates. The flux separation is based on identification of ebullition-related sudden concentration changes during single measurements. Therefore, a variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R script, adjusted for the purpose of CH4 flux calculation. The algorithm was validated by performing a laboratory experiment and tested using flux measurement data (July to September 2013) from a former fen grassland site, which converted into a shallow lake as a result of rewetting. Ebullition and diffusion contributed equally (46 and 55 \%) to total CH4 emissions, which is comparable to ratios given in the literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period. The water temperature gradient was identified as one of the major drivers of diffusive CH4 emissions, whereas no significant driver was found in the case of erratic CH4 ebullition events.}, language = {en} } @misc{HoffmannJurischAlbaetal.2017, author = {Hoffmann, Mathias and Jurisch, Nicole and Alba, Juana Garcia and Borraz, Elisa Albiac and Schmidt, Marten and Huth, Vytas and Rogasik, Helmut and Rieckh, Helene and Verch, Gernot and Sommer, Michael and Augustin, J{\"u}rgen}, title = {Detecting small-scale spatial heterogeneity and temporal dynamics of soil organic carbon (SOC) stocks}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {666}, issn = {1866-8372}, doi = {10.25932/publishup-41711}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417118}, pages = {17}, year = {2017}, abstract = {Carbon (C) sequestration in soils plays a key role in the global C cycle. It is therefore crucial to adequately monitor dynamics in soil organic carbon (Delta SOC) stocks when aiming to reveal underlying processes and potential drivers. However, small-scale spatial (10-30 m) and temporal changes in SOC stocks, particularly pronounced in arable lands, are hard to assess. The main reasons for this are limitations of the well-established methods. On the one hand, repeated soil inventories, often used in long-term field trials, reveal spatial patterns and trends in Delta SOC but require a longer observation period and a sufficient number of repetitions. On the other hand, eddy covariance measurements of C fluxes towards a complete C budget of the soil-plant-atmosphere system may help to obtain temporal Delta SOC patterns but lack small-scale spatial resolution. To overcome these limitations, this study presents a reliable method to detect both short-term temporal dynamics as well as small-scale spatial differences of Delta SOC using measurements of the net ecosystem carbon balance (NECB) as a proxy. To estimate the NECB, a combination of automatic chamber (AC) measurements of CO2 exchange and empirically modeled aboveground biomass development (NPPshoot / were used. To verify our method, results were compared with Delta SOC observed by soil resampling. Soil resampling and AC measurements were performed from 2010 to 2014 at a colluvial depression located in the hummocky ground moraine landscape of northeastern Germany. The measurement site is characterized by a variable groundwater level (GWL) and pronounced small-scale spatial heterogeneity regarding SOC and nitrogen (Nt) stocks. Tendencies and magnitude of Delta SOC values derived by AC measurements and repeated soil inventories corresponded well. The period of maximum plant growth was identified as being most important for the development of spatial differences in annual Delta SOC. Hence, we were able to confirm that AC-based C budgets are able to reveal small-scale spatial differences and short-term temporal dynamics of Delta SOC.}, language = {en} } @misc{PuppeHoehnKaczoreketal.2017, author = {Puppe, Daniel and H{\"o}hn, Axel and Kaczorek, Danuta and Wanner, Manfred and Wehrhan, Marc and Sommer, Michael}, title = {How big is the influence of biogenic silicon pools on short-term changes in water-soluble silicon in soils?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {633}, doi = {10.25932/publishup-41714}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417141}, pages = {5239 -- 5252}, year = {2017}, abstract = {The significance of biogenic silicon (BSi) pools as a key factor for the control of Si fluxes from terrestrial to aquatic ecosystems has been recognized for decades. However, while most research has been focused on phytogenic Si pools, knowledge of other BSi pools is still limited. We hypothesized that different BSi pools influence short-term changes in the water-soluble Si fraction in soils to different extents. To test our hypothesis we took plant (Calamagrostis epigejos, Phragmites australis) and soil samples in an artificial catchment in a post-mining landscape in the state of Brandenburg, Germany. We quantified phytogenic (phytoliths), protistic (diatom frustules and testate amoeba shells) and zoogenic (sponge spicules) Si pools as well as Tironextractable and water-soluble Si fractions in soils at the beginning (t(0)) and after 10 years (t(10)) of ecosystem development. As expected the results of Tiron extraction showed that there are no consistent changes in the amorphous Si pool at Chicken Creek (Huhnerwasser) as early as after 10 years. In contrast to t(0) we found increased water-soluble Si and BSi pools at t(10); thus we concluded that BSi pools are the main driver of short-term changes in water-soluble Si. However, because total BSi represents only small proportions of water-soluble Si at t(0) (< 2 \%) and t(10) (2.8-4.3 \%) we further concluded that smaller (< 5 mu m) and/or fragile phytogenic Si structures have the biggest impact on short-term changes in water-soluble Si. In this context, extracted phytoliths (> 5 mu m) only amounted to about 16\% of total Si con-tents of plant materials of C. epigejos and P. australis at t(10); thus about 84\% of small-scale and/or fragile phytogenic Si is not quantified by the used phytolith extraction method. Analyses of small-scale and fragile phytogenic Si structures are urgently needed in future work as they seem to represent the biggest and most reactive Si pool in soils. Thus they are the most important drivers of Si cycling in terrestrial biogeosystems.}, language = {en} }