@article{ScharfWeineltSchroederetal.2022, author = {Scharf, Christina and Weinelt, Ferdinand Anton and Schroeder, Ines and Paal, Michael and Weigand, Michael and Zoller, Michael and Irlbeck, Michael and Kloft, Charlotte and Briegel, Josef and Liebchen, Uwe}, title = {Does the cytokine adsorber CytoSorb (R) reduce vancomycin exposure in critically ill patients with sepsis or septic shock?}, series = {Annals of intensive care}, volume = {12}, journal = {Annals of intensive care}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {2110-5820}, doi = {10.1186/s13613-022-01017-5}, pages = {8}, year = {2022}, abstract = {Background: Hemadsorption of cytokines is used in critically ill patients with sepsis or septic shock. Concerns have been raised that the cytokine adsorber CytoSorb (R) unintentionally adsorbs vancomycin. This study aimed to quantify vancomycin elimination by CytoSorb (R) . Methods: Critically ill patients with sepsis or septic shock receiving continuous renal replacement therapy and CytoSorb (R) treatment during a prospective observational study were included in the analysis. Vancomycin pharmacokinetics was characterized using population pharmacokinetic modeling. Adsorption of vancomycin by the CytoSorb (R) was investigated as linear or saturable process. The final model was used to derive dosing recommendations based on stochastic simulations. Results: 20 CytoSorb (R) treatments in 7 patients (160 serum samples/24 during CytoSorb (R)-treatment, all continuous infusion) were included in the study. A classical one-compartment model, including effluent flow rate of the continuous hemodialysis as linear covariate on clearance, best described the measured concentrations (without CytoSorb (R)). Significant adsorption with a linear decrease during CytoSorb (R) treatment was identified (p <0.0001) and revealed a maximum increase in vancomycin clearance of 291\% (initially after CytoSorb (R) installation) and a maximum adsorption capacity of 572 mg. For a representative patient of our cohort a reduction of the area under the curve (AUC) by 93 mg/L*24 h during CytoSorb (R) treatment was observed. The additional administration of 500 mg vancomycin over 2 h during CytoSorb (R) attenuated the effect and revealed a negligible reduction of the AUC by 4 mg/L*24h. Conclusion: We recommend the infusion of 500 mg vancomycin over 2 h during CytoSorb (R) treatment to avoid subtherapeutic concentrations.}, language = {en} } @article{VannesteValdesVerheyenetal.2018, author = {Vanneste, Thomas and Valdes, Alicia and Verheyen, Kris and Perring, Michael P. and Bernhardt-Roemermann, Markus and Andrieu, Emilie and Brunet, Jorg and Cousins, Sara A. O. and Deconchat, Marc and De Smedt, Pallieter and Diekmann, Martin and Ehrmann, Steffen and Heinken, Thilo and Hermy, Martin and Kolb, Annette and Lenoir, Jonathan and Liira, Jaan and Naaf, Tobias and Paal, Taavi and Wulf, Monika and Decocq, Guillaume and De Frenne, Pieter}, title = {Functional trait variation of forest understorey plant communities across Europe}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {34}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier GmbH}, address = {M{\"u}nchen}, issn = {1439-1791}, doi = {10.1016/j.baae.2018.09.004}, pages = {1 -- 14}, year = {2018}, abstract = {Global environmental changes are expected to alter the functional characteristics of understorey herb-layer communities, potentially affecting forest ecosystem functioning. However, little is known about what drives the variability of functional traits in forest understories. Here, we assessed the role of different environmental drivers in shaping the functional trait distribution of understorey herbs in fragmented forests across three spatial scales. We focused on 708 small, deciduous forest patches located in 16 agricultural landscape windows, spanning a 2500-km macroclimatic gradient across the temperate forest biome in Europe. We estimated the relative effect of patch-scale, landscape-scale and macroclimatic variables on the community mean and variation of plant height, specific leaf area and seed mass. Macroclimatic variables (monthly temperature and precipitation extremes) explained the largest proportion of variation in community trait means (on average 77\% of the explained variation). In contrast, patch-scale factors dominated in explaining community trait variation (on average 68\% of the explained variation). Notably, patch age, size and internal heterogeneity had a positive effect on the community-level variability. Landscape-scale variables explained only a minor part of the variation in both trait distribution properties. The variation explained by shared combinations of the variable groups was generally negligible. These findings highlight the importance of considering multiple spatial scales in predictions of environmental-change effects on the functionality of forest understories. We propose that forest management sustainability could benefit from conserving larger, historically continuous and internally heterogeneous forest patches to maximise ecosystem service diversity in rural landscapes. (C) 2018 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.}, language = {en} }