@misc{KaminskiSchlagenhaufRappetal.2018, author = {Kaminski, Jakob A. and Schlagenhauf, Florian and Rapp, Michael Armin and Awasthi, Swapnil and Ruggeri, Barbara and Deserno, Lorenz and Banaschewski, Tobias and Bokde, Arun L. W. and Bromberg, Uli and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivi{\`e}res, Sylvane and Flor, Herta and Frouin, Vincent and Garavan, Hugh and Gowland, Penny and Ittermann, Bernd and Martinot, Jean-Luc and Paill{\`e}re Martinot, Marie-Laure and Nees, Frauke and Papadopoulos Orfanos, Dimitri and Paus, Tom{\´a}š and Poustka, Luise and Smolka, Michael N. and Fr{\"o}hner, Juliane H. and Walter, Henrik and Whelan, Robert and Ripke, Stephan and Schumann, Gunter and Heinz, Andreas}, title = {Epigenetic variance in dopamine D2 receptor}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {950}, issn = {1866-8372}, doi = {10.25932/publishup-42568}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425687}, pages = {13}, year = {2018}, abstract = {Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average intelligence test results in the second half of the previous century within one generation is unlikely to be explained by genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand the recent observations of an association between dopamine-dependent encoding of reward prediction errors and cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers contributing to variance in cognitive test performance, and thus possibly contributing to the "missing heritability" between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475 healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1) polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4) functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings specifically assessing individual and environmental factors that modify epigenetic structure.}, language = {en} } @article{KaminskiSchlagenhaufRappetal.2018, author = {Kaminski, Jakob A. and Schlagenhauf, Florian and Rapp, Michael Armin and Awasthi, Swapnil and Ruggeri, Barbara and Deserno, Lorenz and Banaschewski, Tobias and Bokde, Arun L. W. and Bromberg, Uli and B{\"u}chel, Christian and Quinlan, Erin Burke and Desrivieres, Sylvane and Flor, Herta and Frouin, Vincent and Garavan, Hugh and Gowland, Penny and Ittermann, Bernd and Martinot, Jean-Luc and Martinot, Marie-Laure Paillere and Nees, Frauke and Orfanos, Dimitri Papadopoulos and Paus, Tomas and Poustka, Luise and Smolka, Michael N. and Fr{\"o}hner, Juliane H. and Walter, Henrik and Whelan, Robert and Ripke, Stephan and Schumann, Gunter and Heinz, Andreas}, title = {Epigenetic variance in dopamine D2 receptor}, series = {Translational Psychiatry}, volume = {8}, journal = {Translational Psychiatry}, publisher = {Nature Publ. Group}, address = {New York}, organization = {IMAGEN Consortium}, issn = {2158-3188}, doi = {10.1038/s41398-018-0222-7}, pages = {11}, year = {2018}, abstract = {Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average intelligence test results in the second half of the previous century within one generation is unlikely to be explained by genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand the recent observations of an association between dopamine-dependent encoding of reward prediction errors and cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers contributing to variance in cognitive test performance, and thus possibly contributing to the "missing heritability" between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475 healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1) polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4) functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings specifically assessing individual and environmental factors that modify epigenetic structure.}, language = {en} } @article{DesernoBeckHuysetal.2015, author = {Deserno, Lorenz and Beck, Anne and Huys, Quentin J. M. and Lorenz, Robert C. and Buchert, Ralph and Buchholz, Hans-Georg and Plotkin, Michail and Kumakara, Yoshitaka and Cumming, Paul and Heinze, Hans-Jochen and Grace, Anthony A. and Rapp, Michael Armin and Schlagenhauf, Florian and Heinz, Andreas}, title = {Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum}, series = {European journal of neuroscience}, volume = {41}, journal = {European journal of neuroscience}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0953-816X}, doi = {10.1111/ejn.12802}, pages = {477 -- 486}, year = {2015}, abstract = {Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine-driven reinforcement learning towards drug-related reward at the expense of non-drug-related reward. Indeed, in alcohol-dependent patients, reactivity in dopaminergic target areas is shifted from non-drug-related stimuli towards drug-related stimuli. Such hijacked' dopamine signals may impair flexible learning from non-drug-related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs) during a probabilistic reversal learning task in recently detoxified alcohol-dependent patients and healthy controls (N=27). All participants also underwent 6-[F-18]fluoro-DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation by RPEs nor striatal dopamine synthesis capacity differed between groups. However, ventral striatal coding of RPEs correlated inversely with craving in patients. Furthermore, we found a negative correlation between ventral striatal coding of RPEs and dopamine synthesis capacity in healthy controls, but not in alcohol-dependent patients. Moderator analyses showed that the magnitude of the association between dopamine synthesis capacity and RPE coding depended on the amount of chronic, habitual alcohol intake. Despite the relatively small sample size, a power analysis supports the reported results. Using a multimodal imaging approach, this study suggests that dopaminergic modulation of neural learning signals is disrupted in alcohol dependence in proportion to long-term alcohol intake of patients. Alcohol intake may perpetuate itself by interfering with dopaminergic modulation of neural learning signals in the ventral striatum, thus increasing craving for habitual drug intake.}, language = {en} }