@article{PanSchicks2021, author = {Pan, Mengdi and Schicks, Judith M.}, title = {Influence of gas supply changes on the formation process of complex mixed gas hydrates}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules26103039}, pages = {18}, year = {2021}, abstract = {Natural gas hydrate occurrences contain predominantly methane; however, there are increasing reports of complex mixed gas hydrates and coexisting hydrate phases. Changes in the feed gas composition due to the preferred incorporation of certain components into the hydrate phase and an inadequate gas supply is often assumed to be the cause of coexisting hydrate phases. This could also be the case for the gas hydrate system in Qilian Mountain permafrost (QMP), which is mainly controlled by pores and fractures with complex gas compositions. This study is dedicated to the experimental investigations on the formation process of mixed gas hydrates based on the reservoir conditions in QMP. Hydrates were synthesized from water and a gas mixture under different gas supply conditions to study the effects on the hydrate formation process. In situ Raman spectroscopic measurements and microscopic observations were applied to record changes in both gas and hydrate phase over the whole formation process. The results demonstrated the effects of gas flow on the composition of the resulting hydrate phase, indicating a competitive enclathration of guest molecules into the hydrate lattice depending on their properties. Another observation was that despite significant changes in the gas composition, no coexisting hydrate phases were formed.}, language = {en} } @phdthesis{Pan2022, author = {Pan, Mengdi}, title = {Systematic studies on the thermodynamic properties of gas hydrates and their formation/dissociation/transformation behaviors}, doi = {10.25932/publishup-55476}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-554760}, school = {Universit{\"a}t Potsdam}, pages = {XX, 192}, year = {2022}, abstract = {Gas hydrates are ice-like crystalline compounds made of water cavities that retain various types of guest molecules. Natural gas hydrates are CH4-rich but also contain higher hydrocarbons as well as CO2, H2S, etc. They are highly dependent of local pressure and temperature conditions. Considering the high energy content, natural gas hydrates are artificially dissociated for the production of methane gas. Besides, they may also dissociate in response to global warming. It is therefore crucial to investigate the hydrate nucleation and growth process at a molecular level. The understanding of how guest molecules in the hydrate cavities respond to warming climate or gas injection is also of great importance. This thesis is concerned with a systematic investigation of simple and mixed gas hydrates at conditions relevant to the natural hydrate reservoir in Qilian Mountain permafrost, China. A high-pressure cell that integrated into the confocal Raman spectroscopy ensured a precise and continuous characterization of the hydrate phase during formation/dissociation/transformation processes with a high special and spectral resolution. By applying laboratory experiments, the formation of mixed gas hydrates containing other hydrocarbons besides methane was simulated in consideration of the effects from gas supply conditions and sediments. The results revealed a preferential enclathration of different guest molecules in hydrate cavities and further refute the common hypothesis of the coexistence of hydrate phases due to a changing feed gas phase. However, the presence of specific minerals and organic compounds in sediments may have significant impacts on the coexisting solid phases. With regard to the dissociation, the formation damage caused by fines mobilization and migration during hydrate decomposition was reported for the first time, illustrating the complex interactions between fine grains and hydrate particles. Gas hydrates, starting from simple CH4 hydrates to binary CH4—C3H8 hydrates and multi-component mixed hydrates were decomposed by thermal stimulation mimicking global warming. The mechanisms of guest substitution in hydrate structures were studied through the experimental data obtained from CH4—CO2, CH4—mixed gas hydrates and mixed gas hydrates—CO2 systems. For the first time, a second transformation behavior was documented during the transformation process from CH4 hydrates to CO2-rich mixed hydrates. Most of the crystals grew or maintained when exposed to CO2 gas while some others decreased in sizes and even disappeared over time. The highlight of the two last experimental simulations was to visualize and characterize the hydrate crystals which were at different structural transition stages. These experimental simulations enhanced our knowledge about the mixed gas hydrates in natural reservoirs and improved our capability to assess the response to global warming.}, language = {en} }