@article{AliuArchambaultArcheretal.2016, author = {Aliu, E. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Loo, A. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Petrashyk, A. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Chernyakova, M. and Roberts, M. S. E.}, title = {A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {831}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/831/2/193}, pages = {7}, year = {2016}, abstract = {The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259-63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than similar to 2 G before the disappearance of the radio pulsar and greater than similar to 10 G afterward.}, language = {en} } @article{AliuArchambaultArcheretal.2015, author = {Aliu, E. and Archambault, S. and Archer, A. and Aune, T. and Barnacka, Anna and Beilicke, M. and Benbow, W. and Bird, R. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Kansson, N. H. A. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lyutikov, M. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Manuela and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weinstein, A. and Williams, D. A. and Zajczyk, A. and Zitzer, B.}, title = {A search for pulsations from geminga above 100 GeV with veritas}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {800}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/800/1/61}, pages = {7}, year = {2015}, abstract = {We present the results of 71.6 hr of observations of the Geminga pulsar (PSR J0633+1746) with the VERITAS very-high-energy gamma-ray telescope array. Data taken with VERITAS between 2007 November and 2013 February were phase-folded using a Geminga pulsar timing solution derived from data recorded by the XMM-Newton and Fermi-LAT space telescopes. No significant pulsed emission above 100 GeV is observed, and we report upper limits at the 95\% confidence level on the integral flux above 135 GeV (spectral analysis threshold) of 4.0x10(-13) s(-1) cm(-2) and 1.7 x 10(-13) s(-1) cm(-2) for the two principal peaks in the emission profile. These upper limits, placed in context with phase-resolved spectral energy distributions determined from 5 yr of data from the Fermi-Large Area Telescope (LAT), constrain possible hardening of the Geminga pulsar emission spectra above similar to 50 GeV.}, language = {en} } @article{ArchambaultArlenAuneetal.2013, author = {Archambault, S. and Arlen, T. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cesarini, A. and Ciupik, L. and Connolly, M. P. and Cui, W. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Millis, J. and Moriarty, P. and Mukherjee, R. and de Bhroithe, A. O'Faolain and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Saxon, D. B. and Sembroski, G. H. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B. and Boettcher, Markus and Fegan, S. J. and Fortin, P. and Halpern, J. P. and Kovalev, Y. Y. and Lister, M. L. and Liu, J. and Pushkarev, A. B. and Smith, P. S.}, title = {Discovery of a new tev Gamma-Ray source - VER J0521+211}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {776}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/776/2/69}, pages = {10}, year = {2013}, abstract = {We report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov Telescope Array. These observations were motivated by the discovery of a cluster of >30 GeV photons in the first year of Fermi Large Area Telescope observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of (1.93 +/- 0.13(stat) +/- 0.78(sys)) x 10(-11) cm(-2) s(-1) above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, from optical to TeV, with a peak flux corresponding to similar to 0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z = 0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.}, language = {en} } @article{AliuArchambaultArlenetal.2013, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bird, R. and Boettcher, Markus and Bouvier, A. and Bugaev, V. and Byrum, K. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Multiwavelenght observations and modeling of 1ES 1959+650 in a low flux state}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {775}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/775/1/3}, pages = {8}, year = {2013}, abstract = {We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation (sigma) significance in 7.6 hr of observation in a low flux state. A multiwavelength spectral energy distribution (SED) is constructed from contemporaneous data from VERITAS, Fermi-LAT, RXTE PCA, and Swift UVOT. Swift XRT data is not included in the SED due to a lack of simultaneous observations with VERITAS. In contrast to the orphan gamma-ray flare exhibited by this source in 2002, the X-ray flux of the source is found to vary by an order of magnitude, while other energy regimes exhibit less variable emission. A quasi-equilibrium synchrotron self-Compton model with an additional external radiation field is used to describe three SEDs corresponding to the lowest, highest, and average X-ray states. The variation in the X-ray spectrum is modeled by changing the electron injection spectral index, with minor adjustments of the kinetic luminosity in electrons. This scenario produces small-scale flux variability of the order of less than or similar to 2 in the high energy (E > 1MeV) and very high energy (E > 100 GeV) gamma-ray regimes, which is corroborated by the Fermi-LAT, VERITAS, and Whipple 10 m telescope light curves.}, language = {en} } @article{AliuArchambaultArlenetal.2014, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Duke, C. and Dumm, J. and Errando, M. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, M. and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zajczyk, A. and Zitzer, B.}, title = {A three-year multi-wavelenght study of the very-high-energy gamma-ray Blazar 1ES 0229+200}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {782}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/782/1/13}, pages = {12}, year = {2014}, language = {en} } @article{AliuArchambaultArlenetal.2014, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Barnacka, Anna and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Chen, X. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dumm, J. and Eisch, J. D. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, N. and Hanna, D. and Holder, J. and Hughes, G. and Hughes, Z. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Majumdar, P. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nelson, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, M. and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sadun, A. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Sheidaei, F. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Theiling, M. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weekes, T. C. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Boettcher, Markus and Fumagalli, M.}, title = {Investigating broadband variability of the TeV blazar 1ES 1959+650}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {797}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {Veritas Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/797/2/89}, pages = {11}, year = {2014}, abstract = {We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift Ultraviolet and Optical Telescope, X-ray observations by the Swift X-ray Telescope, high-energy gamma-ray observations with the Fermi Large Area Telescope, and very-high-energy (VHE) gamma-ray observations by VERITAS above 315 GeV, all taken between 2012 April 17 and 2012 June 1 (MJD 56034 and 56079). The contemporaneous variability of the broadband spectral energy distribution is explored in the context of a simple synchrotron self Compton (SSC) model. In the SSC emission scenario, we find that the parameters required to represent the high state are significantly different than those in the low state. Motivated by possible evidence of gas in the vicinity of the blazar, we also investigate a reflected emission model to describe the observed variability pattern. This model assumes that the non-thermal emission from the jet is reflected by a nearby cloud of gas, allowing the reflected emission to re-enter the blob and produce an elevated gamma-ray state with no simultaneous elevated synchrotron flux. The model applied here, although not required to explain the observed variability pattern, represents one possible scenario which can describe the observations. As applied to an elevated VHE state of 66\% of the Crab Nebula flux, observed on a single night during the observation period, the reflected emission scenario does not support a purely leptonic non-thermal emission mechanism. The reflected emission model does, however, predict a reflected photon field with sufficient energy to enable elevated gamma-ray emission via pion production with protons of energies between 10 and 100 TeV.}, language = {en} } @article{tAliuArchambaultArlenetal.2013, author = {tAliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bird, R. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Dumm, J. and Dwarkadas, Vikram V. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Gotthelf, E. V. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nelson, T. and de Bhroithe, A. O'Faolain and Ong, R. A. and Orr, M. and Otte, A. N. and Pandel, D. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, Jens and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Skole, C. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Welsing, R. and Williams, D. A. and Zitzer, B.}, title = {Discovery of TeV Gamma-Ray emission toward supernova remnant SNR G78.2+2.1}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {770}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/770/2/93}, pages = {7}, year = {2013}, abstract = {We report the discovery of an unidentified, extended source of very-high-energy gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hr of data taken by the VERITAS gamma-ray observatory in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0 degrees.23 +/- 0 degrees.03(stat-0 degrees.02sys)(+0 degrees.04) and its spectrum is well-characterized by a differential power law (dN/dE = N-0 x (E/TeV)-Gamma) with a photon index of Gamma = 2.37 +/- 0.14(stat) +/- 0.20(sys) and a flux normalization of N-0 = 1.5 +/- 0.2(stat) +/- 0.4(sys) x 10(-12) photon TeV-1 cm(-2) s(-1). This yields an integral flux of 5.2 +/- 0.8(stat) +/- 1.4(sys) x 10(-12) photon cm(-2) s(-1) above 320 GeV, corresponding to 3.7\% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the SNR shock.}, language = {en} } @article{AliuArlenAuneetal.2011, author = {Aliu, E. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Errando, M. and Falcone, A. and Finley, J. P. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gillanders, G. H. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Skole, C. and Smith, A. W. and Staszak, D. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vincent, S. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weinstein, A. and Weisgarber, T. and Williams, D. A.}, title = {Veritas observations of unusual extragalactic transient swift J164449.3+573451}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {738}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/738/2/L30}, pages = {5}, year = {2011}, abstract = {We report on very high energy (>100 GeV) gamma-ray observations of Swift J164449.3+573451, an unusual transient object first detected by the Swift Observatory and later detected by multiple radio, optical, and X-ray observatories. A total exposure of 28 hr was obtained on Swift J164449.3+573451 with the Very Energetic Radiation Imaging Telescope Array System ( VERITAS) during 2011 March 28-April 15. We do not detect the source and place a differential upper limit on the emission at 500 GeV during these observations of 1.4 x 10(-12) erg cm(-2) s(-1) (99\% confidence level). We also present time-resolved upper limits and use a flux limit averaged over the X-ray flaring period to constrain various emission scenarios that can accommodate both the radio-through-X-ray emission detected from the source and the lack of detection by VERITAS.}, language = {en} } @article{AliuArlenAuneetal.2011, author = {Aliu, E. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Christiansen, J. L. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickherber, R. and Duke, C. and Errando, M. and Falcone, A. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Gibbs, K. and Gillanders, G. H. and Godambe, S. and Griffin, S. and Grube, J. and Guenette, R. and Gyuk, G. and Hanna, D. and Holder, J. and Huan, H. and Hughes, G. and Hui, C. M. and Humensky, T. B. and Imran, A. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lyutikov, M. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and McCutcheon, M. and Moriarty, P. and Mukherjee, R. and Nunez, P. and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pizlo, F. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Zitzer, B.}, title = {Detection of pulsed Gamma Rays Above 100 GeV from the Crab Pulsar}, series = {Science}, volume = {334}, journal = {Science}, number = {6052}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {VERITAS Collaboration}, issn = {0036-8075}, doi = {10.1126/science.1208192}, pages = {69 -- 72}, year = {2011}, abstract = {We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 giga-electron volts (GeV) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The photon spectrum of pulsed emission between 100 mega-electron volts and 400 GeV is described by a broken power law that is statistically preferred over a power law with an exponential cutoff. It is unlikely that the observation can be explained by invoking curvature radiation as the origin of the observed gamma rays above 100 GeV. Our findings require that these gamma rays be produced more than 10 stellar radii from the neutron star.}, language = {en} } @article{AliuArchambaultArlenetal.2012, author = {Aliu, E. and Archambault, S. and Arlen, T. and Aune, T. and Beilicke, M. and Benbow, W. and Boettcher, Markus and Bouvier, A. and Bradbury, S. M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cannon, A. and Cesarini, A. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Coppi, P. and Cui, W. and Decerprit, G. and Dickherber, R. and Dumm, J. and Errando, Manel and Falcone, A. and Feng, Q. and Finley, J. P. and Finnegan, G. and Fortson, L. and Furniss, A. and Galante, N. and Gall, D. and Godambe, S. and Griffin, S. and Grube, J. and Gyuk, G. and Hanna, D. and Hawkins, K. and Holder, J. and Huan, H. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Karlsson, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Lee, K. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McArthur, S. and McCann, A. and Moriarty, P. and Mukherjee, Reshmi and Ong, R. A. and Orr, M. and Otte, A. N. and Palma, N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Prokoph, H. and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Roache, E. and Rose, H. J. and Ruppel, J. and Saxon, D. B. and Schroedter, M. and Sembroski, G. H. and Sentuerk, G. D. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tesic, G. and Theiling, M. and Thibadeau, S. and Tsurusaki, K. and Varlotta, A. and Vivier, M. and Wakely, S. P. and Ward, J. E. and Weekes, T. C. and Weinstein, A. and Weisgarber, T. and Williams, D. A. and Zitzer, B. and Fortin, P. and Horan, D.}, title = {Disovery of high-energy and very high energy gamma-ray emission from the blazar RBS 0413}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {750}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/750/2/94}, pages = {6}, year = {2012}, abstract = {We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) gamma-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based gamma-ray observatory, detected VHE. rays from RBS 0413 with a statistical significance of 5.5 standard deviations (sigma) and a gamma-ray flux of (1.5 +/- 0.6(stat) +/- 0.7(syst)) x 10(-8) photons m(-2) s(-1) (similar to 1\% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 +/- 0.68(stat) +/- 0.30(syst). Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE gamma rays from RBS 0413 with a (stat)istical significance of more than 9 sigma, a power-law photon index of 1.57 +/- 0.12(stat-0.12sys')(+0.11) and a gamma-ray flux between 300 MeV and 300 GeV of (1.64 +/- 0.43(stat-0.22sys)(+ 0.31)) x 10(-5) photons m(-2) s(-1). We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the gamma-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.}, language = {en} }