@article{BeniniCapoferriDappiaggi2017, author = {Benini, Marco and Capoferri, Matteo and Dappiaggi, Claudio}, title = {Hadamard States for Quantum Abelian Duality}, series = {Annales de l'Institut Henri Poincar{\´e}}, volume = {18}, journal = {Annales de l'Institut Henri Poincar{\´e}}, publisher = {Springer}, address = {Basel}, issn = {1424-0637}, doi = {10.1007/s00023-017-0593-y}, pages = {3325 -- 3370}, year = {2017}, abstract = {Abelian duality is realized naturally by combining differential cohomology and locally covariant quantum field theory. This leads to a -algebra of observables, which encompasses the simultaneous discretization of both magnetic and electric fluxes. We discuss the assignment of physically well-behaved states on this algebra and the properties of the associated GNS triple. We show that the algebra of observables factorizes as a suitable tensor product of three -algebras: the first factor encodes dynamical information, while the other two capture topological data corresponding to electric and magnetic fluxes. On the former factor and in the case of ultra-static globally hyperbolic spacetimes with compact Cauchy surfaces, we exhibit a state whose two-point correlation function has the same singular structure of a Hadamard state. Specifying suitable counterparts also on the topological factors, we obtain a state for the full theory, ultimately implementing Abelian duality transformations as Hilbert space isomorphisms.}, language = {en} }