@article{BurattiThomasRoussosetal.2019, author = {Buratti, Bonnie J. and Thomas, P. C. and Roussos, E. and Howett, Carly and Seiss, Martin and Hendrix, A. R. and Helfenstein, Paul and Brown, R. H. and Clark, R. N. and Denk, Tilmann and Filacchione, Gianrico and Hoffmann, Holger and Jones, Geraint H. and Khawaja, N. and Kollmann, Peter and Krupp, Norbert and Lunine, Jonathan and Momary, T. W. and Paranicas, Christopher and Postberg, Frank and Sachse, Manuel and Spahn, Frank and Spencer, John and Srama, Ralf and Albin, T. and Baines, K. H. and Ciarniello, Mauro and Economou, Thanasis and Hsu, Hsiang-Wen and Kempf, Sascha and Krimigis, Stamatios M. and Mitchell, Donald and Moragas-Klostermeyer, Georg and Nicholson, Philip D. and Porco, C. C. and Rosenberg, Heike and Simolka, Jonas and Soderblom, Laurence A.}, title = {Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus}, series = {Science}, volume = {364}, journal = {Science}, number = {6445}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat2349}, pages = {1053}, year = {2019}, abstract = {Saturn's main ring system is associated with a set of small moons that either are embedded within it or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the ring-grazing orbits of the Cassini mission. Data on the moons' morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. We find that the optical properties of the moons' surfaces are determined by two competing processes: contamination by a red material formed in Saturn's main ring system and accretion of bright icy particles or water vapor from volcanic plumes originating on the moon Enceladus.}, language = {en} } @article{GraetzSeissSchmidtetal.2019, author = {Gr{\"a}tz, Fabio M. and Seiß, Martin and Schmidt, J{\"u}rgen and Colwell, Joshua and Spahn, Frank}, title = {Sharp Gap Edges in Dense Planetary Rings}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {872}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab007e}, pages = {11}, year = {2019}, abstract = {One of the most intriguing facets of Saturn's rings are the sharp edges of gaps in the rings where the surface density abruptly drops to zero. This is despite of the fact that the range over which a moon transfers angular momentum onto the ring material is much larger. Recent UVIS-scans of the edges of the Encke and Keeler gap show that this drop occurs over a range approximately equal to the rings' thickness. Borderies et al. show that this striking feature is likely related to the local reversal of the usually outward directed viscous transport of angular momentum in strongly perturbed regions. In this article we revise the Borderies et al. model using a granular flow model to define the shear and bulk viscosities, ν and ζ, and incorporate the angular momentum flux reversal effect into the axisymmetric diffusion model we developed for gaps in dense planetary rings. Finally, we apply our model to the Encke and Keeler division in order to estimate the shear and bulk viscosities in the vicinity of both gaps}, language = {en} } @misc{SpahnSachseSeissetal.2019, author = {Spahn, Frank and Sachse, Manuel and Seiss, Martin and Hsu, Hsiang-Wen and Kempf, Sascha and Horanyi, Mihaly}, title = {Circumplanetary Dust Populations}, series = {Space science reviews}, volume = {215}, journal = {Space science reviews}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-018-0577-3}, pages = {54}, year = {2019}, abstract = {We summarize the current state of observations of circumplanetary dust populations, including both dilute and dense rings and tori around the giant planets, ejecta clouds engulfing airless moons, and rings around smaller planetary bodies throughout the Solar System. We also discuss the theoretical models that enable these observations to be understood in terms of the sources, sinks and transport of various dust populations. The dynamics and resulting transport of the particles can be quite complex, due to the fact that their motion is influenced by neutral and plasma drag, radiation pressure, and electromagnetic forcesall in addition to gravity. The relative importance of these forces depends on the environment, as well as the makeup and size of the particles. Possible dust sources include the generation of ejecta particles by impacts, active volcanoes and geysers, and the capture of exogenous particles. Possible dust sinks include collisions with moons, rings, or the central planet, erosion due to sublimation and sputtering, even ejection and escape from the circumplanetary environment.}, language = {en} } @article{HoffmannSeissSpahn2013, author = {Hoffmann, H. and Seiß, Martin and Spahn, Frank}, title = {Vertical relaxation of a moonlet propeller in Saturn's a ring}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {765}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/765/1/L4}, pages = {3}, year = {2013}, abstract = {Two images, taken by the Cassini spacecraft near Saturn's equinox in 2009 August, show the Earhart propeller casting a 350 km long shadow, offering the opportunity to watch how the ring height, excited by the propeller moonlet, relaxes to an equilibrium state. From the shape of the shadow cast and a model of the azimuthal propeller height relaxation, we determine the exponential cooling constant of this process to be lambda = 0.07 +/- 0.02 km(-1), and thereby determine the collision frequency of the ring particles in the vertically excited region of the propeller to be omega(c)/Omega = 0.9 +/- 0.2.}, language = {en} } @phdthesis{Seiss2009, author = {Seiß, Martin}, title = {Moonlets in Saturn's dense rings}, address = {Potsdam}, pages = {47 S.}, year = {2009}, language = {en} } @article{HoffmannSeissSaloetal.2015, author = {Hoffmann, Holger and Seiss, Martin and Salo, Heikki and Spahn, Frank}, title = {Vertical structures induced by embedded moonlets in Saturn's rings}, series = {Icarus : international journal of solar system studies}, volume = {252}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2015.02.003}, pages = {400 -- 414}, year = {2015}, abstract = {We study the vertical extent of propeller structures in Saturn's rings (i) by extending the model of Spahn and Sremcevic (Spahn, F., Sremcevic, M. [2000]. Astron. Astrophys., 358, 368-372) to include the vertical direction and (ii) by performing N-body box simulations of a perturbing moonlet embedded into the rings. We find that the gravitational interaction of ring particles with a non-inclined moonlet does not induce considerable vertical excursions of ring particles, but causes a considerable thermal motion in the ring plane. We expect ring particle collisions to partly convert the lateral induced thermal motion into vertical excursions of ring particles in the course of a quasi-thermalization. The N-body box simulations lead to maximal propeller heights of about 0.6-0.8 Hill radii of the embedded perturbing moonlet. Moonlet sizes estimated by this relation are in good agreement with size estimates from radial propeller scalings for the propellers Bleriot and Earhart. For large propellers, the extended hydrodynamical propeller model predicts an exponential propeller height relaxation, confirmed by N-body box simulations of non-self gravitating ring particles. Exponential cooling constants, calculated from the hydrodynamical propeller model agree fairly well with values from fits to the tail of the azimuthal height decay of the N-body box simulations. From exponential cooling constants, determined from shadows cast by the propeller Earhart and imaged by the Cassini spacecraft, we estimate collision frequencies of about 6 collisions per particle per orbit in the propeller gap region and about 11 collisions per particle per orbit in the propeller wake region. (C) 2015 Elsevier Inc. All rights reserved.}, language = {en} } @article{GuimaraesAlbersSpahnetal.2012, author = {Guimaraes, Ana H. F. and Albers, Nicole and Spahn, Frank and Seiss, Martin and Vieira-Neto, Ernesto and Brilliantov, Nikolai V.}, title = {Aggregates in the strength and gravity regime Particles sizes in Saturn's rings}, series = {Icarus : international journal of solar system studies}, volume = {220}, journal = {Icarus : international journal of solar system studies}, number = {2}, publisher = {Elsevier}, address = {San Diego}, issn = {0019-1035}, doi = {10.1016/j.icarus.2012.06.005}, pages = {660 -- 678}, year = {2012}, abstract = {Particles in Saturn's main rings range in size from dust to kilometer-sized objects. Their size distribution is thought to be a result of competing accretion and fragmentation processes. While growth is naturally limited in tidal environments, frequent collisions among these objects may contribute to both accretion and fragmentation. As ring particles are primarily made of water ice attractive surface forces like adhesion could significantly influence these processes, finally determining the resulting size distribution. Here, we derive analytic expressions for the specific self-energy Q and related specific break-up energy Q(star) of aggregates. These expressions can be used for any aggregate type composed of monomeric constituents. We compare these expressions to numerical experiments where we create aggregates of various types including: regular packings like the face-centered cubic (fcc), Ballistic Particle Cluster Aggregates (BPCA), and modified BPCAs including e.g. different constituent size distributions. We show that accounting for attractive surface forces such as adhesion a simple approach is able to: (a) generally account for the size dependence of the specific break-up energy for fragmentation to occur reported in the literature, namely the division into "strength" and "gravity" regimes and (b) estimate the maximum aggregate size in a collisional ensemble to be on the order of a few tens of meters, consistent with the maximum particle size observed in Saturn's rings of about 10 m.}, language = {en} } @misc{SpahnSeiss2015, author = {Spahn, Frank and Seiss, Martin}, title = {Charges dropped}, series = {Nature physics}, volume = {11}, journal = {Nature physics}, number = {9}, publisher = {Nature Publ. Group}, address = {London}, issn = {1745-2473}, pages = {709 -- 710}, year = {2015}, language = {en} } @article{SeissSpahn2011, author = {Seiss, Martin and Spahn, Frank}, title = {Hydrodynamics of saturn's dense rings}, series = {Mathematical modelling of natural phenomena}, volume = {6}, journal = {Mathematical modelling of natural phenomena}, number = {4}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0973-5348}, doi = {10.1051/mmnp/20116409}, pages = {191 -- 218}, year = {2011}, abstract = {The space missions Voyager and Cassini together with earthbound observations revealed a wealth of structures in Saturn's rings. There are, for example, waves being excited at ring positions which are in orbital resonance with Saturn's moons. Other structures can be assigned to embedded moons like empty gaps, moon induced wakes or S-shaped propeller features. Furthermore, irregular radial structures are observed in the range from 10 meters until kilometers. Here some of these structures will be discussed in the frame of hydrodynamical modeling of Saturn's dense rings. For this purpose we will characterize the physical properties of the ring particle ensemble by mean field quantities and point to the special behavior of the transport coefficients. We show that unperturbed rings can become unstable and how diffusion acts in the rings. Additionally, the alternative streamline formalism is introduced to describe perturbed regions of dense rings with applications to the wake damping and the dispersion relation of the density waves.}, language = {en} } @article{WeinholdWegenerKuenstleretal.2000, author = {Weinhold, Till and Wegener, Michael and K{\"u}nstler, Wolfgang and Seiß, Martin and G{\"o}rne, Thomas and Gerhard, Reimund}, title = {Porous polytetrafluoroethylene (PTFE) single-film space-charge electrets with high piezoelectric coefficients}, issn = {0537-9989}, year = {2000}, language = {en} } @article{WegenerSeissGerhard2001, author = {Wegener, Michael and Seiß, Martin and Gerhard, Reimund}, title = {Prepariation and assessment of piezo- and pyroelectric poly- (vinylidene fluoride-hexafluoropropylene) copolymer films}, year = {2001}, language = {en} } @article{GerhardKuenstlerGoerneetal.2000, author = {Gerhard, Reimund and K{\"u}nstler, Wolfgang and G{\"o}rne, Thomas and Pucher, Andreas and Weinhold, Till and Seiß, Martin and Xia, Zhongfu and Wedel, Armin and Danz, Rudi}, title = {Porous polytetrafluoroethylene space-charge electrets for piezoelectrical applications}, year = {2000}, language = {en} } @misc{SeissSpahn2011, author = {Seiß, Martin and Spahn, Frank}, title = {Hydrodynamics of Saturn's dense rings}, series = {Postprints der Universit{\"a}t Potsdam : Postprint Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Postprint Mathematisch Naturwissenschaftliche Reihe}, doi = {10.25932/publishup-41313}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413139}, pages = {191 -- 218}, year = {2011}, abstract = {The space missions Voyager and Cassini together with earthbound observations re-vealed a wealth of structures in Saturn's rings. There are, for example, waves being excited at ring positions which are in orbital resonance with Saturn's moons. Other structures can be assigned to embedded moons like empty gaps, moon induced wakes or S-shaped propeller features. Further-more, irregular radial structures are observed in the range from 10 meters until kilometers. Here some of these structures will be discussed in the frame of hydrodynamical modeling of Saturn's dense rings. For this purpose we will characterize the physical properties of the ring particle ensemble by mean field quantities and point to the special behavior of the transport coefficients. We show that unperturbed rings can become unstable and how diffusion acts in the rings. Additionally, the alternative streamline formalism is introduced to describe perturbed regions of dense rings with applications to the wake damping and the dispersion relation of the density waves.}, language = {en} }