@misc{DambacherRolfsGoellneretal.2009, author = {Dambacher, Michael and Rolfs, Martin and G{\"o}llner, Kristin and Kliegl, Reinhold and Jacobs, Arthur M.}, title = {Event-related potentials reveal rapid verification of predicted visual input}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44953}, year = {2009}, abstract = {Human information processing depends critically on continuous predictions about upcoming events, but the temporal convergence of expectancy-based top-down and input-driven bottom-up streams is poorly understood. We show that, during reading, event-related potentials differ between exposure to highly predictable and unpredictable words no later than 90 ms after visual input. This result suggests an extremely rapid comparison of expected and incoming visual information and gives an upper temporal bound for theories of top-down and bottom-up interactions in object recognition.}, language = {en} } @article{BoettcherRolfsKliegletal.2009, author = {B{\"o}ttcher, Heiko and Rolfs, Martin and Kliegl, Reinhold and Ihle, Wolfgang}, title = {Inattentional blindness and change blindness bei Jungen mit ADHS}, year = {2009}, language = {en} } @article{BoettcherRolfsKliegletal.2009, author = {B{\"o}ttcher, Heiko and Rolfs, Martin and Kliegl, Reinhold and Ihle, Wolfgang}, title = {Inattentional blindness and change blindness bei Jungen mit ADHS : Posterpr{\"a}sentation}, issn = {1616-3443}, doi = {10.1026/1616-3443.38.S1.20}, year = {2009}, language = {de} } @article{KlieglRolfsLaubrocketal.2009, author = {Kliegl, Reinhold and Rolfs, Martin and Laubrock, Jochen and Engbert, Ralf}, title = {Microsaccadic modulation of response times in spatial attention tasks}, issn = {0340-0727}, doi = {10.1007/s00426-008-0202-2}, year = {2009}, language = {en} } @article{Rolfs2009, author = {Rolfs, Martin}, title = {Microsaccades : small steps on a long way}, issn = {0042-6989}, doi = {10.1016/j.visres.2009.08.010}, year = {2009}, abstract = {Contrary to common wisdom, fixations are a dynamically rich behavior, composed of continual, miniature eye movements, of which microsaccades are the most salient component. Over the last few years, interest in these small movements has risen dramatically, driven by both neurophysiological and psychophysical results and by advances in techniques, analysis, and modeling of eye movements. The field has a long history but a significant portion of the earlier work has gone missing in the current literature, in part, as a result of the collapse of the field in the 1980s that followed a series of discouraging results. The present review compiles 60 years of work demonstrating the unique contribution of microsaccades to visual and oculomotor function. Specifically, the review covers the contribution of microsaccades to (1) the control of fixation position, (2) the reduction of perceptual fading and the continuity of perception, (3) the generation of synchronized visual transients, (4) visual acuity, (5) scanning of small spatial regions, (6) shifts of spatial attention, (7) resolving perceptual ambiguities in the face of multistable perception, as well as several other functions. The accumulated evidence demonstrates that microsaccades serve both perceptual and oculomotor goals and although in some cases their contribution is neither necessary nor unique, microsaccades are a malleable tool conveniently employed by the visual system.}, language = {en} }