@article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} } @article{YenesewTwinomuhweziKiremireetal.2009, author = {Yenesew, Abiy and Twinomuhwezi, Hannington and Kiremire, Bernard T. and Mbugua, Martin N. and Gitu, Peter M. and Heydenreich, Matthias and Peter, Martin G.}, title = {8-Methoxyneorautenol and radical scavenging flavonoids from Erythrina abyssinica}, issn = {1011-3924}, year = {2009}, abstract = {A new pterocarpan (named 8-methoxyneorautenol) was isolated from the acetone ext. of the root bark of Erythrina abyssinica. In addn., the known isoflavonoid derivs. eryvarin L, erycristagallin and shinpterocarpin were identified for the first time from the roots of this plant. The structures were detd. on the basis of spectroscopic evidence. The new compd. showed selective antimicrobial activity against Trichophyton mentagrophytes. The acetone ext. of the root bark of E. abyssinica showed radical scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The pterocarpenes, 3-hydroxy-9-methoxy-10-(3,3-dimethylallyl)pterocarpene and erycristagallin, were the most active constituents of the roots of this plant and showing dose-dependent activities similar to that of the std. quercetin. [on SciFinder (R)]}, language = {en} } @article{PenoneAllanSoliveresetal.2019, author = {Penone, Caterina and Allan, Eric and Soliveres, Santiago and Felipe-Lucia, Maria R. and Gossner, Martin M. and Seibold, Sebastian and Simons, Nadja K. and Schall, Peter and van der Plas, Fons and Manning, Peter and Manzanedo, Ruben D. and Boch, Steffen and Prati, Daniel and Ammer, Christian and Bauhus, Juergen and Buscot, Francois and Ehbrecht, Martin and Goldmann, Kezia and Jung, Kirsten and Mueller, Joerg and Mueller, Joerg C. and Pena, Rodica and Polle, Andrea and Renner, Swen C. and Ruess, Liliane and Schoenig, Ingo and Schrumpf, Marion and Solly, Emily F. and Tschapka, Marco and Weisser, Wolfgang W. and Wubet, Tesfaye and Fischer, Markus}, title = {Specialisation and diversity of multiple trophic groups are promoted by different forest features}, series = {Ecology letters}, volume = {22}, journal = {Ecology letters}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.13182}, pages = {170 -- 180}, year = {2019}, abstract = {While forest management strongly influences biodiversity, it remains unclear how the structural and compositional changes caused by management affect different community dimensions (e.g. richness, specialisation, abundance or completeness) and how this differs between taxa. We assessed the effects of nine forest features (representing stand structure, heterogeneity and tree composition) on thirteen above- and belowground trophic groups of plants, animals, fungi and bacteria in 150 temperate forest plots differing in their management type. Canopy cover decreased light resources, which increased community specialisation but reduced overall diversity and abundance. Features increasing resource types and diversifying microhabitats (admixing of oaks and conifers) were important and mostly affected richness. Belowground groups responded differently to those aboveground and had weaker responses to most forest features. Our results show that we need to consider forest features rather than broad management types and highlight the importance of considering several groups and community dimensions to better inform conservation.}, language = {en} } @misc{NeumannHorstkemperKruegeretal.2002, author = {Neumann, Bernhard and Horstkemper, Marianne and Kr{\"u}ger, Wolfgang and Wilkens, Martin and Bohlen, Andreas and Fr{\"u}bing, Peter and Wegener, Michael and Scheff, Ullrich and Neher, Dieter and Brehmer, Ludwig and Kleinpeter, Erich and Wolf, Gunter and Koetz, Joachim and Peter, Martin G. and Senkbeil, Sigrid and Meyer, Till}, title = {Portal = Im Trend: Physiker und Chemiker erforschen "Soft Matter"}, volume = {2002}, issn = {1618-6893}, doi = {10.25932/publishup-50144}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-501441}, pages = {40}, year = {2002}, abstract = {Aus dem Inhalt: Im Trend: Physiker und Chemiker erforschen „Soft Matter" -Brandenburger Netzwerk f{\"u}r Existenzgr{\"u}nder erh{\"a}lt F{\"o}rderung -Universit{\"a}t leistet Beitrag zum Romantik-Jahr -Musiksender MTV und Bryan Adams auf dem Campus}, language = {de} } @article{MiddeldorpMahajanHorikoshietal.2019, author = {Middeldorp, Christel M. and Mahajan, Anubha and Horikoshi, Momoko and Robertson, Neil R. and Beaumont, Robin N. and Bradfield, Jonathan P. and Bustamante, Mariona and Cousminer, Diana L. and Day, Felix R. and De Silva, N. Maneka and Guxens, Monica and Mook-Kanamori, Dennis O. and St Pourcain, Beate and Warrington, Nicole M. and Adair, Linda S. and Ahlqvist, Emma and Ahluwalia, Tarunveer Singh and Almgren, Peter and Ang, Wei and Atalay, Mustafa and Auvinen, Juha and Bartels, Meike and Beckmann, Jacques S. and Bilbao, Jose Ramon and Bond, Tom and Borja, Judith B. and Cavadino, Alana and Charoen, Pimphen and Chen, Zhanghua and Coin, Lachlan and Cooper, Cyrus and Curtin, John A. and Custovic, Adnan and Das, Shikta and Davies, Gareth E. and Dedoussis, George V. and Duijts, Liesbeth and Eastwood, Peter R. and Eliasen, Anders U. and Elliott, Paul and Eriksson, Johan G. and Estivill, Xavier and Fadista, Joao and Fedko, Iryna O. and Frayling, Timothy M. and Gaillard, Romy and Gauderman, W. James and Geller, Frank and Gilliland, Frank and Gilsanz, Vincente and Granell, Raquel and Grarup, Niels and Groop, Leif and Hadley, Dexter and Hakonarson, Hakon and Hansen, Torben and Hartman, Catharina A. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Hebebrand, Johannes and Heinrich, Joachim and Helgeland, Oyvind and Henders, Anjali K. and Henderson, John and Henriksen, Tine B. and Hirschhorn, Joel N. and Hivert, Marie-France and Hocher, Berthold and Holloway, John W. and Holt, Patrick and Hottenga, Jouke-Jan and Hypponen, Elina and Iniguez, Carmen and Johansson, Stefan and Jugessur, Astanand and Kahonen, Mika and Kalkwarf, Heidi J. and Kaprio, Jaakko and Karhunen, Ville and Kemp, John P. and Kerkhof, Marjan and Koppelman, Gerard H. and Korner, Antje and Kotecha, Sailesh and Kreiner-Moller, Eskil and Kulohoma, Benard and Kumar, Ashish and Kutalik, Zoltan and Lahti, Jari and Lappe, Joan M. and Larsson, Henrik and Lehtimaki, Terho and Lewin, Alexandra M. and Li, Jin and Lichtenstein, Paul and Lindgren, Cecilia M. and Lindi, Virpi and Linneberg, Allan and Liu, Xueping and Liu, Jun and Lowe, William L. and Lundstrom, Sebastian and Lyytikainen, Leo-Pekka and Ma, Ronald C. W. and Mace, Aurelien and Magi, Reedik and Magnus, Per and Mamun, Abdullah A. and Mannikko, Minna and Martin, Nicholas G. and Mbarek, Hamdi and McCarthy, Nina S. and Medland, Sarah E. and Melbye, Mads and Melen, Erik and Mohlke, Karen L. and Monnereau, Claire and Morgen, Camilla S. and Morris, Andrew P. and Murray, Jeffrey C. and Myhre, Ronny and Najman, Jackob M. and Nivard, Michel G. and Nohr, Ellen A. and Nolte, Ilja M. and Ntalla, Ioanna and Oberfield, Sharon E. and Oken, Emily and Oldehinkel, Albertine J. and Pahkala, Katja and Palviainen, Teemu and Panoutsopoulou, Kalliope and Pedersen, Oluf and Pennell, Craig E. and Pershagen, Goran and Pitkanen, Niina and Plomin, Robert and Power, Christine and Prasad, Rashmi B. and Prokopenko, Inga and Pulkkinen, Lea and Raikkonen, Katri and Raitakari, Olli T. and Reynolds, Rebecca M. and Richmond, Rebecca C. and Rivadeneira, Fernando and Rodriguez, Alina and Rose, Richard J. and Salem, Rany and Santa-Marina, Loreto and Saw, Seang-Mei and Schnurr, Theresia M. and Scott, James G. and Selzam, Saskia and Shepherd, John A. and Simpson, Angela and Skotte, Line and Sleiman, Patrick M. A. and Snieder, Harold and Sorensen, Thorkild I. A. and Standl, Marie and Steegers, Eric A. P. and Strachan, David P. and Straker, Leon and Strandberg, Timo and Taylor, Michelle and Teo, Yik-Ying and Thiering, Elisabeth and Torrent, Maties and Tyrrell, Jessica and Uitterlinden, Andre G. and van Beijsterveldt, Toos and van der Most, Peter J. and van Duijn, Cornelia M. and Viikari, Jorma and Vilor-Tejedor, Natalia and Vogelezang, Suzanne and Vonk, Judith M. and Vrijkotte, Tanja G. M. and Vuoksimaa, Eero and Wang, Carol A. and Watkins, William J. and Wichmann, H-Erich and Willemsen, Gonneke and Williams, Gail M. and Wilson, James F. and Wray, Naomi R. and Xu, Shujing and Xu, Cheng-Jian and Yaghootkar, Hanieh and Yi, Lu and Zafarmand, Mohammad Hadi and Zeggini, Eleftheria and Zemel, Babette S. and Hinney, Anke and Lakka, Timo A. and Whitehouse, Andrew J. O. and Sunyer, Jordi and Widen, Elisabeth E. and Feenstra, Bjarke and Sebert, Sylvain and Jacobsson, Bo and Njolstad, Pal R. and Stoltenberg, Camilla and Smith, George Davey and Lawlor, Debbie A. and Paternoster, Lavinia and Timpson, Nicholas J. and Ong, Ken K. and Bisgaard, Hans and Bonnelykke, Klaus and Jaddoe, Vincent W. V. and Tiemeier, Henning and Jarvelin, Marjo-Riitta and Evans, David M. and Perry, John R. B. and Grant, Struan F. A. and Boomsma, Dorret I. and Freathy, Rachel M. and McCarthy, Mark I. and Felix, Janine F.}, title = {The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia}, series = {European journal of epidemiology}, volume = {34}, journal = {European journal of epidemiology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, organization = {EArly Genetics Lifecourse EGG Consortium EGG Membership EAGLE Membership}, issn = {0393-2990}, doi = {10.1007/s10654-019-00502-9}, pages = {279 -- 300}, year = {2019}, abstract = {The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.}, language = {en} } @misc{PeterBoldtNiedersteinetal.1990, author = {Peter, Martin G. and Boldt, Peter C. and Niederstein, Yvonne and Peter-Katalinić, Jasna}, title = {Synthesen von Galactose-Cluster-haltigen Steroid-Derivaten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16783}, year = {1990}, abstract = {The synthesis of galactose clusters that are linked to a steroid moiety by a peptide-like spacer unit is described. The galactose cluster is obtained by Koenigs-Knorr glycosylation of TRIS-Gly-Fmoc (2b) under Helferich conditions. Peptide and ester bonds are formed after activation of carboxylic acids as diphenylthiophene dioxide (TDO) esters. 6a is synthesized in a convergent way by coupling of (Ac4Gal)3-TRIS-Gly (3e) with cholesteryl TDO succinate (5b). Coupling of (Ac4Gal)3-TRIS-Gly hydrogen succinate (3f) with Gly-O-Chol (5d) by means of EEDQ yields 6d. Reaction of (Ac4Gal)3-TRIS-Gly-SUCC-O-TDO (3g) with 25-hydroxycholesterol leads in a linear sequence to the oxysterol derivative 6f. Selective cleavage of the acetyl groups from galactose units yields the known compound 6b and the new derivatives 6e and 6g.}, language = {de} } @article{TeriacaAndrettaAuchereetal.2012, author = {Teriaca, Luca and Andretta, Vincenzo and Auchere, Frederic and Brown, Charles M. and Buchlin, Eric and Cauzzi, Gianna and Culhane, J. Len and Curdt, Werner and Davila, Joseph M. and Del Zanna, Giulio and Doschek, George A. and Fineschi, Silvano and Fludra, Andrzej and Gallagher, Peter T. and Green, Lucie and Harra, Louise K. and Imada, Shinsuke and Innes, Davina and Kliem, Bernhard and Korendyke, Clarence and Mariska, John T. and Martinez-Pillet, Valentin and Parenti, Susanna and Patsourakos, Spiros and Peter, Hardi and Poletto, Luca and Rutten, Robert J. and Schuehle, Udo and Siemer, Martin and Shimizu, Toshifumi and Socas-Navarro, Hector and Solanki, Sami K. and Spadaro, Daniele and Trujillo-Bueno, Javier and Tsuneta, Saku and Dominguez, Santiago Vargas and Vial, Jean-Claude and Walsh, Robert and Warren, Harry P. and Wiegelmann, Thomas and Winter, Berend and Young, Peter}, title = {LEMUR large european module for solar ultraviolet research}, series = {Experimental astronomy : an international journal on astronomical instrumentation and data analysis}, volume = {34}, journal = {Experimental astronomy : an international journal on astronomical instrumentation and data analysis}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {0922-6435}, doi = {10.1007/s10686-011-9274-x}, pages = {273 -- 309}, year = {2012}, abstract = {The solar outer atmosphere is an extremely dynamic environment characterized by the continuous interplay between the plasma and the magnetic field that generates and permeates it. Such interactions play a fundamental role in hugely diverse astrophysical systems, but occur at scales that cannot be studied outside the solar system. Understanding this complex system requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1'' and 0.3''), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 170 and 1270 . The LEMUR slit covers 280'' on the Sun with 0.14'' per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km s (-aEuro parts per thousand 1) or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.}, language = {en} } @misc{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {19}, doi = {10.25932/publishup-56537}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565379}, pages = {14}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @article{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {99}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {4}, publisher = {Elsevier}, address = {New York}, organization = {Lifelines Cohort Study
Regeneron Genetics Ctr}, issn = {0085-2538}, doi = {10.1016/j.kint.2020.09.030}, pages = {926 -- 939}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @article{DenglerWagnerDembiczetal.2018, author = {Dengler, J{\"u}rgen and Wagner, Viktoria and Dembicz, Iwona and Garcia-Mijangos, Itziar and Naqinezhad, Alireza and Boch, Steffen and Chiarucci, Alessandro and Conradi, Timo and Filibeck, Goffredo and Guarino, Riccardo and Janisova, Monika and Steinbauer, Manuel J. and Acic, Svetlana and Acosta, Alicia T. R. and Akasaka, Munemitsu and Allers, Marc-Andre and Apostolova, Iva and Axmanova, Irena and Bakan, Branko and Baranova, Alina and Bardy-Durchhalter, Manfred and Bartha, Sandor and Baumann, Esther and Becker, Thomas and Becker, Ute and Belonovskaya, Elena and Bengtsson, Karin and Benito Alonso, Jose Luis and Berastegi, Asun and Bergamini, Ariel and Bonini, Ilaria and Bruun, Hans Henrik and Budzhak, Vasyl and Bueno, Alvaro and Antonio Campos, Juan and Cancellieri, Laura and Carboni, Marta and Chocarro, Cristina and Conti, Luisa and Czarniecka-Wiera, Marta and De Frenne, Pieter and Deak, Balazs and Didukh, Yakiv P. and Diekmann, Martin and Dolnik, Christian and Dupre, Cecilia and Ecker, Klaus and Ermakov, Nikolai and Erschbamer, Brigitta and Escudero, Adrian and Etayo, Javier and Fajmonova, Zuzana and Felde, Vivian A. and Fernandez Calzado, Maria Rosa and Finckh, Manfred and Fotiadis, Georgios and Fracchiolla, Mariano and Ganeva, Anna and Garcia-Magro, Daniel and Gavilan, Rosario G. and Germany, Markus and Giladi, Itamar and Gillet, Francois and Giusso del Galdo, Gian Pietro and Gonzalez, Jose M. and Grytnes, John-Arvid and Hajek, Michal and Hajkova, Petra and Helm, Aveliina and Herrera, Mercedes and Hettenbergerova, Eva and Hobohm, Carsten and Huellbusch, Elisabeth M. and Ingerpuu, Nele and Jandt, Ute and Jeltsch, Florian and Jensen, Kai and Jentsch, Anke and Jeschke, Michael and Jimenez-Alfaro, Borja and Kacki, Zygmunt and Kakinuma, Kaoru and Kapfer, Jutta and Kavgaci, Ali and Kelemen, Andras and Kiehl, Kathrin and Koyama, Asuka and Koyanagi, Tomoyo F. and Kozub, Lukasz and Kuzemko, Anna and Kyrkjeeide, Magni Olsen and Landi, Sara and Langer, Nancy and Lastrucci, Lorenzo and Lazzaro, Lorenzo and Lelli, Chiara and Leps, Jan and Loebel, Swantje and Luzuriaga, Arantzazu L. and Maccherini, Simona and Magnes, Martin and Malicki, Marek and Marceno, Corrado and Mardari, Constantin and Mauchamp, Leslie and May, Felix and Michelsen, Ottar and Mesa, Joaquin Molero and Molnar, Zsolt and Moysiyenko, Ivan Y. and Nakaga, Yuko K. and Natcheva, Rayna and Noroozi, Jalil and Pakeman, Robin J. and Palpurina, Salza and Partel, Meelis and Paetsch, Ricarda and Pauli, Harald and Pedashenko, Hristo and Peet, Robert K. and Pielech, Remigiusz and Pipenbaher, Natasa and Pirini, Chrisoula and Pleskova, Zuzana and Polyakova, Mariya A. and Prentice, Honor C. and Reinecke, Jennifer and Reitalu, Triin and Pilar Rodriguez-Rojo, Maria and Rolecek, Jan and Ronkin, Vladimir and Rosati, Leonardo and Rosen, Ejvind and Ruprecht, Eszter and Rusina, Solvita and Sabovljevic, Marko and Maria Sanchez, Ana and Savchenko, Galina and Schuhmacher, Oliver and Skornik, Sonja and Sperandii, Marta Gaia and Staniaszek-Kik, Monika and Stevanovic-Dajic, Zora and Stock, Marin and Suchrow, Sigrid and Sutcliffe, Laura M. E. and Swacha, Grzegorz and Sykes, Martin and Szabo, Anna and Talebi, Amir and Tanase, Catalin and Terzi, Massimo and Tolgyesi, Csaba and Torca, Marta and Torok, Peter and Tothmeresz, Bela and Tsarevskaya, Nadezda and Tsiripidis, Ioannis and Tzonev, Rossen and Ushimaru, Atushi and Valko, Orsolya and van der Maarel, Eddy and Vanneste, Thomas and Vashenyak, Iuliia and Vassilev, Kiril and Viciani, Daniele and Villar, Luis and Virtanen, Risto and Kosic, Ivana Vitasovic and Wang, Yun and Weiser, Frank and Went, Julia and Wesche, Karsten and White, Hannah and Winkler, Manuela and Zaniewski, Piotr T. and Zhang, Hui and Ziv, Yaron and Znamenskiy, Sergey and Biurrun, Idoia}, title = {GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands}, series = {Phytocoenologia}, volume = {48}, journal = {Phytocoenologia}, number = {3}, publisher = {Cramer}, address = {Stuttgart}, issn = {0340-269X}, doi = {10.1127/phyto/2018/0267}, pages = {331 -- 347}, year = {2018}, abstract = {GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.}, language = {en} } @book{MientusKlempinNowaketal.2023, author = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna and Wyss, Corinne and Aufschnaiter, Claudia von and Faix, Ann-Christin and te Poel, Kathrin and Wahbe, Nadia and Pieper, Martin and H{\"o}ller, Katharina and Kallenbach, Lea and F{\"o}rster, Magdalena and Redecker, Anke and Dick, Mirjam and Holle, J{\"o}rg and Schneider, Edina and Rehfeldt, Daniel and Brauns, Sarah and Abels, Simone and Ferencik-Lehmkuhl, Daria and Fr{\"a}nkel, Silvia and Frohn, Julia and Liebsch, Ann-Catherine and Pech, Detlef and Schreier, Pascal and Jessen, Moiken and Großmann, Uta and Skintey, Lesya and Voerkel, Paul and Vaz Ferreira, Mergenfel A. and Zimmermann, Jan-Simon and Buddeberg, Magdalena and Henke, Vanessa and Hornberg, Sabine and V{\"o}lschow, Yvette and Warrelmann, Julia-Nadine and Malek, Jennifer and Tinnefeld, Anja and Schmidt, Peggy and Bauer, Tobias and J{\"a}nisch, Christopher and Spitzer, Lisa and Franken, Nadine and Degeling, Maria and Preisfeld, Angelika and Meier, Jana and K{\"u}th, Simon and Scholl, Daniel and Vogelsang, Christoph and Watson, Christina and Weißbach, Anna and Kulgemeyer, Christoph and Oetken, Mandy and Gorski, Sebastian and Kubsch, Marcus and Sorge, Stefan and Wulff, Peter and Fellenz, Carolin D. and Schnell, Susanne and Larisch, Cathleen and Kaiser, Franz and Knott, Christina and Reimer, Stefanie and Stegm{\"u}ller, Nathalie and Boukray{\^a}a Trabelsi, Kathrin and Schißlbauer, Franziska and Lemberger, Lukas and Barth, Ulrike and Wiehl, Angelika and Rogge, Tim and B{\"o}hnke, Anja and Dietz, Dennis and Großmann, Leroy and Wienmeister, Annett and Zoppke, Till and Jiang, Lisa and Gr{\"u}nbauer, Stephanie and Ostersehlt, D{\"o}rte and Peukert, Sophia and Sch{\"a}fer, Christoph and L{\"o}big, Anna and Br{\"o}ll, Leena and Brandt, Birgit and Breuer, Meike and Dausend, Henriette and Krelle, Michael and Andersen, Gesine and Falke, Sascha and Kindermann-G{\"u}zel, Kristin and K{\"o}rner, Katrina and Lottermoser, Lisa-Marie and P{\"u}gner, Kati and Sonnenburg, Nadine and Akarsu, Selim and Rechl, Friederike and Gadinger, Laureen and Heinze, Lena and Wittmann, Eveline and Franke, Manuela and Lachmund, Anne-Marie and B{\"o}ttger, Julia and Hannover, Bettina and Behrendt, Renata and Conty, Valentina and Grundmann, Stephanie and Ghassemi, Novid and Opitz, Ben and Br{\"a}mer, Martin and Gasparjan, David and Sambanis, Michaela and K{\"o}ster, Hilde and L{\"u}cke, Martin and Nordmeier, Volkhard and Schaal, Sonja and Haberbosch, Maximilian and Meissner, Maren and Schaal, Steffen and Br{\"u}chner, Melanie and Riehle, Tamara and Leopold, Bengta Marie and Gerlach, Susanne and Rau-Patschke, Sarah and Skorsetz, Nina and Weber, Nadine and Damk{\"o}hler, Jens and Elsholz, Markus and Trefzger, Thomas and Lewek, Tobias and Borowski, Andreas}, title = {Reflexion in der Lehrkr{\"a}ftebildung}, series = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, journal = {Potsdamer Beitr{\"a}ge f{\"u}r Lehrkr{\"a}ftebildung und Bildungsforschung}, number = {4}, editor = {Mientus, Lukas and Klempin, Christiane and Nowak, Anna}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-566-8}, issn = {2626-3556}, doi = {10.25932/publishup-59171}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-591717}, publisher = {Universit{\"a}t Potsdam}, pages = {452}, year = {2023}, abstract = {Reflexion ist eine Schl{\"u}sselkategorie f{\"u}r die professionelle Entwicklung von Lehrkr{\"a}ften, welche als Ausbildungsziel in den Bildungsstandards f{\"u}r die Lehrkr{\"a}ftebildung verankert ist. Eine Verstetigung universit{\"a}r gepr{\"a}gter Forschung und Modellierung in der praxisnahen Anwendung im schulischen Kontext bietet Potentiale nachhaltiger Professionalisierung. Die St{\"a}rkung reflexionsbezogener Kompetenzen durch Empirie und Anwendung scheint eine phasen{\"u}bergreifende Herausforderung der Lehrkr{\"a}ftebildung zu sein, die es zu bew{\"a}ltigen gilt. Ziele des Tagungsbandes Reflexion in der Lehrkr{\"a}ftebildung sind eine theoretische Sch{\"a}rfung des Konzeptes „Reflexive Professionalisierung" und der Austausch {\"u}ber Fragen der Einbettung wirksamer reflexionsbezogener Lerngelegenheiten in die Lehrkr{\"a}ftebildung. Forschende und Lehrende der‚ drei Phasen (Studium, Referendariat sowie Fort- und Weiterbildung) der Lehrkr{\"a}ftebildung stellen Lehrkonzepte und Forschungsprojekte zum Thema Reflexion in der Lehrkr{\"a}ftebildung vor und diskutieren diese. Gemeinsam mit Teilnehmenden aller Phasen und von verschiedenen Standorten der Lehrkr{\"a}ftebildung werden zuk{\"u}nftige Herausforderungen identifiziert und L{\"o}sungsans{\"a}tze herausgearbeitet.}, language = {de} } @phdthesis{BahrkeEinarssonGislasonetal.2003, author = {Bahrke, Sven and Einarsson, Jon M. and Gislason, Johannes and Haebel, Sophie and Peter-Katalinic, Jasna and Peter, Martin G.}, title = {Characterization of chitooligosaccharides by mass spectrometry}, isbn = {82-47-15901-5}, year = {2003}, language = {en} } @article{RusuNgWilkeetal.2005, author = {Rusu, Viorel Marin and Ng, C. H. and Wilke, Max and Tiersch, Brigitte and Fratzl, Peter and Peter, Martin G.}, title = {Size-controlled hydroxyapatite nanoparticles as self-organized organic-in organic composite materials}, issn = {0142-9612}, year = {2005}, abstract = {This paper presents some results concerning the size-controlled hydroxyapatite nanoparticles obtained in aqueous media in a biopolymer matrix from soluble precursors salts. Taking the inspiration from nature, where composite materials made of a polymer matrix and inorganic fillers are often found, e.g. bone, shell of crustaceans, shell of eggs, etc., the feasibility on making composite materials containing chitosan and nanosized hydroxyapatite was investigated. A stepwise co-precipitation approach was used to obtain different types of composites by means of different ratio between components. The synthesis of hydroxyapatite was carried out in the chitosan matrix from calcium chloride and sodium dihydrogenphosphate in alkaline solutions at moderate pH of 10-11 for 24 h. Our research is focused on studying and understanding the structure of this class of composites, aiming at the development of novel materials, controlled at the nanolevel scale. The X-ray diffraction technique was employed in order to study the kinetic of hydroxyapatite formation in the chitosan matrix as well as to determine the HAp crystallite sizes in the composite samples. The hydroxyapatite synthesized using this route was found to be nano-sized (15-50nm). Moreover, applying an original approach to analyze the (002) XRD diffraction peak profile of hydroxyapatite by using a sum of two Gauss functions, the bimodal distribution of nanosized hydroxyapatite within the chitosan matrix was revealed. Two types of size distribution domains such as cluster-like (between 200 and 400 nm), which are the habitat of "small" hydroxyapatite nanocrystallites and scattered-like, which are the habitat of "large" hydroxyapatite nanocrystallites was probed by TEM and CSLM. The structural features of composites suggest that self-assembly processes might be involved. The composites contain nanosized hydroxyapatite with structural features close to those of biological apatites that make them attractive for bone tissue engineering applications. (c) 2005 Elsevier Ltd. All rights reserved}, language = {en} } @misc{PeterAndersenHartmannetal.1992, author = {Peter, Martin G. and Andersen, Svend Olav and Hartmann, Rudolf and Miessner, Merle and Roepstorff, Peter}, title = {Catecholamine-protein conjugates : isolation of 4-phenylphenoxazin-2-ones from oxidative coupling of N-acetyldopamine with alipathic amino acids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17571}, year = {1992}, abstract = {4-Phenylphenoxazinones were isolated after biomimetic oxidation, using diphenoloxidases of insect cuticle, mushroom tyrosinase, or after autoxidation of N-acetyldopamine (Image ) in the presence of β-alanine, β-alanine methyl ester or N-acetyl-L-lysine. They are formed presumably by addition of 2-aminoalkyl-5-alkylphenols to the o-quinone of biphenyltetrol which, in turn, arises from oxidative coupling of. The structures of present the first examples for the assembly of reasonably stable intermediates in the rather complex process of chemical modifications of aliphatic amino acid residues by o-quinones.}, language = {en} } @misc{PeterStuppLentes1983, author = {Peter, Martin G. and Stupp, Hans-Peter and Lentes, Klaus-Ulrich}, title = {Umkehr der Enantioselektivit{\"a}t bei der enzymatischen Hydrolyse von Juvenilhormon als Ergebnis einer Proteinfraktionierung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17001}, year = {1983}, abstract = {Aus dem Inhalt: Die Juvenilhormone 1a-c werden im Blut von Insekten enzymatisch zu den biologisch inaktiven Sluren hydrolysiert. Bei der Hydrolyse von racemischem 1c im Blut der Wanderheuschrecke Locusta migratoria wird ein Umsatz von 40-60\% erreicht. Das unumgesetzte Edukt enth{\"a}llt einen {\"U}berschuß an nat{\"u}rlich konfiguriertem (10R)-1c (e.e. 47.2\%). Wir konnten zeigen, daß das in der H{\"a}molymphe vorhandene Hormon-Bindungsprotein bevorzugt mit (10R)- 1c assoziiert.}, language = {de} } @article{AndersenPeterRoepstorff1996, author = {Andersen, S. O. and Peter, Martin G. and Roepstorff, Peter}, title = {Cuticular sclerotization in insects}, year = {1996}, language = {en} } @article{HaebelPeterKatalinicPeter1997, author = {Haebel, Sophie and Peter-Katalinic, Jasna and Peter, Martin G.}, title = {Mass spectrometry of chitooligosaccharides}, isbn = {88-86889- 01-1}, year = {1997}, language = {en} } @article{CederkvistZamfirBahrkeetal.2006, author = {Cederkvist, F. Henning and Zamfir, Alina D. and Bahrke, Sven and Eijsink, Vincent G. H. and Sorlie, Morten and Peter-Katalinic, Jasna and Peter, Martin G.}, title = {Identification of a high-affinity-binding oligosaccharide by (+) nanoelectrospray quadrupole time-of-flight tandem mass spectrometry of a noncovalent enzyme-ligand complex}, issn = {1433-7851}, doi = {10.1002/anie.200503168}, year = {2006}, language = {en} } @article{SeltingAuerBarthWeingartenetal.2009, author = {Selting, Margret and Auer, Peter and Barth-Weingarten, Dagmar and Bergmann, J{\"o}rg and Bergmann, Pia and Birkner, Karin and Couper-Kuhlen, Elizabeth and Deppermann, Arnulf and Gilles, Peter and G{\"u}nthner, Susanne and Hartung, Martin and Kern, Friederike and Mertzlufft, Christine and Meyer, Christian and Morek, Miriam and Oberzaucher, Frank and Peters, J{\"o}rg and Quasthoff, Uta and Sch{\"u}tte, Wilfried and Stukenbrock, Anja and Uhmann, Susanne}, title = {Gespr{\"a}chsanalytisches Transkriptionssystem 2 (GAT 2)}, issn = {1617-1837}, year = {2009}, language = {de} } @inproceedings{HofukuChoNishidaetal.2013, author = {Hofuku, Yayoi and Cho, Shinya and Nishida, Tomohiro and Kanemune, Susumu and Linck, Barbara and Kim, Seungyon and Park, Seongbin and Van{\´i}ček, Jiř{\´i} and Gujberov{\´a}, Monika and Tomcs{\´a}nyi, Peter and Dagiene, Valentina and Jevsikova, Tatjana and Schulte, Carsten and Sentance, Sue and Thota, Neena and G{\"u}lbahar, Yasemin and İlkhan, Mustafa and Kilis, Selcan and Arslan, Okan and Nakano, Yoshiaki and Izutsu, Katsunobu and Lessner, Daniel and Reffay, Christophe and Miled, Mahdi and Ortiz, Pascal and F{\´e}vrier, Lo{\"i}c and Grgurina, Nataša and Weise, Martin and Bellettini, Carlo and Lonati, Violetta and Malchiodi, Dario and Monga, Mattia and Morpurgo, Anna and Torelli, Mauro and Planteu, Lukas and Standl, Bernhard and Grossmann, Wilfried and Neuwirth, Erich and Benacka, Jan and Ragonis, Noa and Hodges, Steve and Berry, Carol and Kusterer, Peter}, title = {Informatics in schools : local proceedings of the 6th International Conference ISSEP 2013 ; selected papers ; Oldenburg, Germany, February 26-March 2, 2013}, editor = {Diethelm, Ira and Arndt, Jannik and D{\"u}nnebier, Malte and Syrbe, J{\"o}rn}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-222-3}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63688}, pages = {162}, year = {2013}, abstract = {The International Conference on Informatics in Schools: Situation, Evolution and Perspectives - ISSEP - is a forum for researchers and practitioners in the area of Informatics education, both in primary and secondary schools. It provides an opportunity for educators to reflect upon the goals and objectives of this subject, its curricula and various teaching/learning paradigms and topics, possible connections to everyday life and various ways of establishing Informatics Education in schools. This conference also cares about teaching/learning materials, various forms of assessment, traditional and innovative educational research designs, Informatics' contribution to the preparation of children for the 21st century, motivating competitions, projects and activities supporting informatics education in school.}, language = {en} } @article{BahrkeEinarssonGislasonetal.2002, author = {Bahrke, Sven and Einarsson, Jon M. and Gislason, Johannes and Haebel, Sophie and Letzel, Matthias C. and Peter-Katalinic, Jasna and Peter, Martin G.}, title = {Sequence analysis of chitooligosaccharides by matrix-assisted laser desorption ionization postsource decay mass spectrometry}, year = {2002}, abstract = {Oligosaccharides composed of 2-acetamido-2-deoxy-D-glucopyranose (GlcNAc) and/or 2-amino-2-deoxy-D- glucopyranose (GlcN) were prepd. by chem. degrdn. of chitin or chitosan and sepd. by gel permeation chromatog. Oligosaccharides obtained after enzymic hydrolysis of chitosan [FA 0.19] with a fungal chitinase were derivatized by reductive amination with 2-aminoacridone and sequenced by matrix-assisted laser desorption ionization time-of-flight postsource decay (PSD) mass spectrometry (MS). The sequence of a trimer, D1A2, was established as D-A-A. The compn. of a hexamer D3A3 was .apprx.65\% D-A-D-D-A-A and 35\% D-D-A-D-A-A. The PSD MS of a nonamer D5A4-amac revealed four isobaric species D-X-Y-D-X-Y-D-A-A, where A is GlcNAc, D is GlcN, and X and Y (X ¹ Y) are mutually either D or A. This structure motif was also obsd. in a dodecamer D7A5 which was composed of eight isobaric sequences of the general formula (D-X-Y)3- D-A-A.}, language = {en} } @article{LetzelPeterKatalinicPeter2001, author = {Letzel, Matthias C. and Peter-Katalinic, Jasna and Peter, Martin G.}, title = {Mass spectrometry of chitin and chitosan oligosaccharides}, year = {2001}, language = {en} } @article{LetzelSynstadEijsinketal.1999, author = {Letzel, Matthias C. and Synstad, Bjoenar and Eijsink, Vincent G. H. and Peter-Katalinic, Jasna and Peter, Martin G.}, title = {Libraries of chito-oligosaccharides of mixed acetylation patterns and their interactions with chitinases}, isbn = {3-9806494-5-8}, year = {1999}, language = {en} } @article{JumaAkalaEyaseetal.2011, author = {Juma, Wanyama P. and Akala, Hoseah M. and Eyase, Fredrick L. and Muiva, Lois M. and Heydenreich, Matthias and Okalebo, Faith A. and Gitu, Peter M. and Peter, Martin G. and Walsh, Douglas S. and Imbuga, Mabel and Yenesew, Abiy}, title = {Terpurinflavone an antiplasmodial flavone from the stem of Tephrosia Purpurea}, series = {Phytochemistry letters}, volume = {4}, journal = {Phytochemistry letters}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2011.02.010}, pages = {176 -- 178}, year = {2011}, abstract = {The stem extract of Tephrosia purpurea showed antiplasmodial activity against the D6 (chloroquine-sensitive) and W2 (chloroquine-resistant) strains of Plasmodium falciparum with IC(50) values of 10.47 +/- 2.22 mu g/ml and 12.06 +/- 2.54 mu g/ml, respectively. A new prenylated flavone, named terpurinflavone, along with the known compounds lanceolatin A, (-)-semiglabrin and lanceolatin B have been isolated from this extract. The new compound, terpurinflavone, showed the highest antiplasmodial activity with IC(50) values of 3.12 +/- 0.28 mu M (D6) and 6.26 +/- 2.66 mu M (W2). The structures were determined on the basis of spectroscopic evidence.}, language = {en} } @article{AndayiYenesewDereseetal.2006, author = {Andayi, Andrew W. and Yenesew, Abiy and Derese, Solomon and Midiwo, Jacob O. and Gitu, Peter M. and Jondiko, Ogoche J. I. and Akala, Hoseah M. and Liyala, Pamela and Wangui, Julia and Waters, Norman C. and Heydenreich, Matthias and Peter, Martin G.}, title = {Antiplasmodial flavonoids from Erythrina sacleuxii}, issn = {0032-0943}, doi = {10.1055/s-2005-873200}, year = {2006}, abstract = {The acetone extracts of the root bark and stem bark of Erythrina sacleuxii showed antiplasmodial activities against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Chromatographic separation of the acetone extract of the root bark afforded a new isoflavone, 7-hydroxy-4 -methoxy-3'- prenylisoflavone (trivial name 5-deoxy-3' - prenylbiochanin A) along with known isoflavonoids as the antiplasmodial principles. Flavonoids and isoflavonoids isolated from the stem bark of E. sucleuxii were also tested and showed antiplasmodial activities. The structures were determined on the basis of spectroscopic evidence}, language = {en} } @article{YildirimSchildgenEchtleretal.2013, author = {Yildirim, Cengiz and Schildgen, Taylor F. and Echtler, Helmut Peter and Melnick, Daniel and Bookhagen, Bodo and Ciner, T. Attila and Niedermann, Samuel and Merchel, Silke and Martschini, Martin and Steier, Peter and Strecker, Manfred}, title = {Tectonic implications of fluvial incision and pediment deformation at the northern margin of the Central Anatolian Plateau based on multiple cosmogenic nuclides}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20066}, pages = {1107 -- 1120}, year = {2013}, abstract = {We document Quaternary fluvial incision driven by fault-controlled surface deformation in the inverted intermontane G{\"o}kirmak Basin in the Central Pontide mountains along the northern margin of the Central Anatolian Plateau. In-situ-produced Be-10, Ne-21, and Cl-36 concentrations from gravel-covered fluvial terraces and pediment surfaces along the trunk stream of the basin (the G{\"o}kirmak River) yield model exposure ages ranging from 71ka to 34645ka and average fluvial incision rates over the past similar to 350ka of 0.280.01mm a(-1). Similarities between river incision rates and coastal uplift rates at the Black Sea coast suggest that regional uplift is responsible for the river incision. Model exposure ages of deformed pediment surfaces along tributaries of the trunk stream range from 605ka to 110 +/- 10ka, demonstrating that the thrust faults responsible for pediment deformation were active after those times and were likely active earlier as well as explaining the topographic relief of the region. Together, our data demonstrate cumulative incision that is linked to active internal shortening and uplift of similar to 0.3mm a(-1) in the Central Pontide orogenic wedge, which may ultimately contribute to the lateral growth of the northern Anatolian Plateau.}, language = {en} } @article{SchulzeMakuchWagnerKounavesetal.2018, author = {Schulze-Makuch, Dirk and Wagner, Dirk and Kounaves, Samuel P. and Mangelsdorf, Kai and Devine, Kevin G. and de Vera, Jean-Pierre and Schmitt-Kopplin, Philippe and Grossart, Hans-Peter and Parro, Victor and Kaupenjohann, Martin and Galy, Albert and Schneider, Beate and Airo, Alessandro and Froesler, Jan and Davila, Alfonso F. and Arens, Felix L. and Caceres, Luis and Cornejo, Francisco Solis and Carrizo, Daniel and Dartnell, Lewis and DiRuggiero, Jocelyne and Flury, Markus and Ganzert, Lars and Gessner, Mark O. and Grathwohl, Peter and Guan, Lisa and Heinz, Jacob and Hess, Matthias and Keppler, Frank and Maus, Deborah and McKay, Christopher P. and Meckenstock, Rainer U. and Montgomery, Wren and Oberlin, Elizabeth A. and Probst, Alexander J. and Saenz, Johan S. and Sattler, Tobias and Schirmack, Janosch and Sephton, Mark A. and Schloter, Michael and Uhl, Jenny and Valenzuela, Bernardita and Vestergaard, Gisle and Woermer, Lars and Zamorano, Pedro}, title = {Transitory microbial habitat in the hyperarid Atacama Desert}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {115}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1714341115}, pages = {2670 -- 2675}, year = {2018}, language = {en} } @article{GlaeserBolteMartinetal.2013, author = {Gl{\"a}ser, Stefanie P. and Bolte, Kathrin and Martin, Karin and Busse, Hans-J{\"u}rgen and Grossart, Hans-Peter and K{\"a}mpfer, Peter and Gl{\"a}ser, Jens}, title = {Novosphingobium fuchskuhlense sp nov., isolated from the north-east basin of Lake Grosse Fuchskuhle}, series = {International journal of systematic and evolutionary microbiology}, volume = {63}, journal = {International journal of systematic and evolutionary microbiology}, publisher = {Society for General Microbiology}, address = {Reading}, issn = {1466-5026}, doi = {10.1099/ijs.0.043083-0}, pages = {586 -- 592}, year = {2013}, abstract = {A yellow pigmented, Gram-negative, rod-shaped bacterium designated FNE08-7(T) was isolated from subsurface water of the north-east basin of the bog lake Grosse Fuchskuhle (Brandenburg, Germany). A first analysis of the nearly full-length 16S rRNA gene sequence analysis including environmental 16S rRNA gene sequences derived from freshwater ecosystems showed that strain FNE08-7(T) is the first cultured representative, to our knowledge, of the freshwater tribe Novo-A2. Further analysis indicates highest 16S rRNA gene sequence similarities to the type strains of Novosphingobium stygium (98.0\%) and Novosphingobium taihuense (97.4\%) and between 94.0\% and 96.9\% sequence similarity to other members of the genus Novosphingobium. Reconstruction of phylogenetic trees showed that strain FNE08-7(T) formed a distinct cluster with the type strains of N. stygium and N. taihuense supported by high bootstrap values. DNA DNA hybridization of strain FNE08-7(T) with N. stygium SMCC B0712(T) and N. taihuense DSM 17507(T) revealed low similarity values of 18.4\% (reciprocal: 11.4\%) and 23.1\% (reciprocal: 54.2\%), respectively. The predominant fatty acid of the isolate is C-18:1 omega 7c (56.4\%) and two characteristic 2-hydroxy fatty acids, C-14:0 2-OH (16.5\%) and C-15:0 2-OH (3.3\%) occur. Ubiquinone Q-10 is the major respiratory quinone. The predominant polar lipids are phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol, sphingoglycolipid, phosphatidylcholine and minor amounts of diphosphatidylglycerol. Spermidine is the predominant polyamine. Characterization by genotypic, chemotaxonomic and phenotypic analysis indicate that strain FNE08-7(T) represents a novel species of the genus Novosphingobium within the Alphaproteobacteria. Therefore, we propose the species Novosphingobium fuchskuhlense sp. nov., with FNE08-7(T) (=DSM 25065(T)=CCM 7978(T)=CCUG 61508(T)) as the type strain.}, language = {en} } @article{SchellenbergReichertHardtetal.2020, author = {Schellenberg, Johannes and Reichert, Jessica and Hardt, Martin and Klingelh{\"o}fer, Ines and Morlock, Gertrud and Schubert, Patrick and Bižić, Mina and Grossart, Hans-Peter and K{\"a}mpfer, Peter and Wilke, Thomas and Glaeser, Stefanie P.}, title = {The bacterial microbiome of the long-term aquarium cultured high-microbial abundance sponge Haliclona cnidata}, series = {Frontiers in Marine Science}, volume = {7}, journal = {Frontiers in Marine Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-7745}, doi = {10.3389/fmars.2020.00266}, pages = {20}, year = {2020}, abstract = {Marine sponges host highly diverse but specific bacterial communities that provide essential functions for the sponge holobiont, including antimicrobial defense. Here, we characterized the bacterial microbiome of the marine sponge Haliclona cnidata that has been in culture in an artificial marine aquarium system. We tested the hypotheses (1) that the long-term aquarium cultured sponge H. cnidata is tightly associated with a typical sponge bacterial microbiota and (2) that the symbiotic Bacteria sustain bioactivity under harmful environmental conditions to facilitate holobiont survival by preventing pathogen invasion. Microscopic and phylogenetic analyses of the bacterial microbiota revealed that H. cnidata represents a high microbial abundance (HMA) sponge with a temporally stable bacterial community that significantly shifts with changing aquarium conditions. A 4-week incubation experiment was performed in small closed aquarium systems with antibiotic and/or light exclusion treatments to reduce the total bacterial and photosynthetically active sponge-associated microbiota to a treatment-specific resilient community. While the holobiont was severely affected by the experimental treatment (i.e., bleaching of the sponge, reduced bacterial abundance, shifted bacterial community composition), the biological defense and bacterial community interactions (i.e., quorum sensing activity) remained intact. 16S rRNA gene amplicon sequencing revealed a resilient community of 105 bacterial taxa, which remained in the treated sponges. These 105 taxa accounted for a relative abundance of 72-83\% of the bacterial sponge microbiota of non-treated sponge fragments that have been cultured under the same conditions. We conclude that a sponge-specific resilient community stays biologically active under harmful environmental conditions, facilitating the resilience of the holobiont. In H. cnidata, bacteria are located in bacteriocytes, which may have contributed to the observed phenomenon.}, language = {en} } @article{GiesersKamannDreizleretal.2019, author = {Giesers, Benjamin David and Kamann, Sebastian and Dreizler, Stefan and Husser, Tim-Oliver and Askar, Abbas and G{\"o}ttgens, Fabian and Brinchmann, Jarle and Latour, Marilyn and Weilbacher, Peter Michael and Wendt, Martin and Roth, Martin M.}, title = {A stellar census in globular clusters with MUSE: Binaries in NGC 3201}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {632}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201936203}, pages = {20}, year = {2019}, abstract = {We utilise multi-epoch MUSE spectroscopy to study binary stars in the core of the Galactic globular cluster NGC 3201. Our sample consists of 3553 stars with 54 883 spectra in total comprising 3200 main-sequence stars up to 4 magnitudes below the turn-off. Each star in our sample has between 3 and 63 (with a median of 14) reliable radial velocity measurements within five years of observations. We introduce a statistical method to determine the probability of a star showing radial velocity variations based on the whole inhomogeneous radial velocity sample. Using HST photometry and an advanced dynamical MOCCA simulation of this specific cluster we overcome observational biases that previous spectroscopic studies had to deal with. This allows us to infer a binary frequency in the MUSE field of view and enables us to deduce the underlying true binary frequency of (6.75 +/- 0.72)\% in NGC 3201. The comparison of the MUSE observations with the MOCCA simulation suggests a large portion of primordial binaries. We can also confirm a radial increase in the binary fraction towards the cluster centre due to mass segregation. We discovered that in the core of NGC 3201 at least (57.5 +/- 7.9)\% of blue straggler stars are in a binary system. For the first time in a study of globular clusters, we were able to fit Keplerian orbits to a significant sample of 95 binaries. We present the binary system properties of eleven blue straggler stars and the connection to SX Phoenicis-type stars. We show evidence that two blue straggler formation scenarios, the mass transfer in binary (or triple) star systems and the coalescence due to binary-binary interactions, are present in our data. We also describe the binary and spectroscopic properties of four sub-subgiant (or red straggler) stars. Furthermore, we discovered two new black hole candidates with minimum masses (M sin i) of (7.68 +/- 0.50)M-circle dot, (4.4 +/- 2.8)M-circle dot, and refine the minimum mass estimate on the already published black hole to (4.53 +/- 0.21)M-circle dot, These black holes are consistent with an extensive black hole subsystem hosted by NGC 3201.}, language = {en} } @article{GoettgensWeilbacherRothetal.2019, author = {G{\"o}ttgens, Fabian and Weilbacher, Peter Michael and Roth, Martin M. and Dreizler, Stefan and Giesers, Benjamin and Husser, Tim-Oliver and Kamann, Sebastian and Brinchmann, Jarle and Kollatschny, Wolfram and Monreal-Ibero, Ana and Schmidt, Kasper Borello and Wendt, Martin and Wisotzki, Lutz and Bacon, Roland}, title = {Discovery of an old nova remnant in the Galactic globular cluster M 22}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {626}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935221}, pages = {6}, year = {2019}, abstract = {A nova is a cataclysmic event on the surface of a white dwarf in a binary system that increases the overall brightness by several orders of magnitude. Although binary systems with a white dwarf are expected to be overabundant in globular clusters compared with in the Galaxy, only two novae from Galactic globular clusters have been observed. We present the discovery of an emission nebula in the Galactic globular cluster M 22 (NGC 6656) in observations made with the integral-field spectrograph MUSE. We extracted the spectrum of the nebula and used the radial velocity determined from the emission lines to confirm that the nebula is part of NGC 6656. Emission-line ratios were used to determine the electron temperature and density. It is estimated to have a mass of 1-17 x 10(-5) M-circle dot. This mass and the emission-line ratios indicate that the nebula is a nova remnant. Its position coincides with the reported location of a "guest star", an ancient Chinese term for transients, observed in May 48 BCE. With this discovery, this nova may be one of the oldest confirmed extra-solar events recorded in human history.}, language = {en} } @article{KamannHusserDreizleretal.2017, author = {Kamann, Sebastian and Husser, T. -O. and Dreizler, S. and Emsellem, E. and Weilbacher, Peter Michael and Martens, S. and Bacon, R. and den Brok, M. and Giesers, B. and Krajnovic, Davor and Roth, Martin M. and Wendt, Martin and Wisotzki, Lutz}, title = {A stellar census in globular clusters with MUSE}, series = {Monthly notices of the Royal Astronomical Society}, volume = {473}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2719}, pages = {5591 -- 5616}, year = {2017}, abstract = {This is the first of a series of papers presenting the results from our survey of 25 Galactic globular clusters with the MUSE integral-field spectrograph. In combination with our dedicated algorithm for source deblending, MUSE provides unique multiplex capabilities in crowded stellar fields and allows us to acquire samples of up to 20 000 stars within the half-light radius of each cluster. The present paper focuses on the analysis of the internal dynamics of 22 out of the 25 clusters, using about 500 000 spectra of 200 000 individual stars. Thanks to the large stellar samples per cluster, we are able to perform a detailed analysis of the central rotation and dispersion fields using both radial profiles and two-dimensional maps. The velocity dispersion profiles we derive show a good general agreement with existing radial velocity studies but typically reach closer to the cluster centres. By comparison with proper motion data, we derive or update the dynamical distance estimates to 14 clusters. Compared to previous dynamical distance estimates for 47 Tuc, our value is in much better agreement with other methods. We further find significant (>3 sigma) rotation in the majority (13/22) of our clusters. Our analysis seems to confirm earlier findings of a link between rotation and the ellipticities of globular clusters. In addition, we find a correlation between the strengths of internal rotation and the relaxation times of the clusters, suggesting that the central rotation fields are relics of the cluster formation that are gradually dissipated via two-body relaxation.}, language = {en} } @article{GoettgensHusserKamannetal.2019, author = {G{\"o}ttgens, Fabian and Husser, Tim-Oliver and Kamann, Sebastian and Dreizler, Stefan and Giesers, Benjamin and Kollatschny, Wolfram and Weilbacher, Peter Michael and Roth, Martin M. and Wendt, Martin}, title = {A stellar census in globular clusters with MUSE: A spectral catalogue of emission-line sources}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {631}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201936485}, pages = {16}, year = {2019}, abstract = {Aims. Globular clusters produce many exotic stars due to a much higher frequency of dynamical interactions in their dense stellar environments. Some of these objects were observed together with several hundred thousand other stars in our MUSE survey of 26 Galactic globular clusters. Assuming that at least a few exotic stars have exotic spectra (i.e. spectra that contain emission lines), we can use this large spectroscopic data set of over a million stellar spectra as a blind survey to detect stellar exotica in globular clusters. Methods. To detect emission lines in each spectrum, we modelled the expected shape of an emission line as a Gaussian curve. This template was used for matched filtering on the di fferences between each observed 1D spectrum and its fitted spectral model. The spectra with the most significant detections of H alpha emission are checked visually and cross-matched with published catalogues. Results. We find 156 stars with H alpha emission, including several known cataclysmic variables (CV) and two new CVs, pulsating variable stars, eclipsing binary stars, the optical counterpart of a known black hole, several probable sub-subgiants and red stragglers, and 21 background emission-line galaxies. We find possible optical counterparts to 39 X-ray sources, as we detected H alpha emission in several spectra of stars that are close to known positions of Chandra X-ray sources. This spectral catalogue can be used to supplement existing or future X-ray or radio observations with spectra of potential optical counterparts to classify the sources.}, language = {en} } @article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @article{WeilbacherMonrealIberoVerhammeetal.2018, author = {Weilbacher, Peter Michael and Monreal-Ibero, Ana and Verhamme, Anne and Sandin, Christer and Steinmetz, Matthias and Kollatschny, Wolfram and Krajnovic, Davor and Kamann, Sebastian and Roth, Martin M. and Erroz-Ferrer, Santiago and Marino, Raffaella Anna and Maseda, Michael V. and Wendt, Martin and Bacon, Roland and Dreizler, Stefan and Richard, Johan and Wisotzki, Lutz}, title = {Lyman-continuum leakage as dominant source of diffuse ionized gas in the Antennae galaxy}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {611}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731669}, pages = {17}, year = {2018}, abstract = {The Antennae galaxy (NGC 4038/39) is the closest major interacting galaxy system and is therefore often studied as a merger prototype. We present the first comprehensive integral field spectroscopic dataset of this system, observed with the MUSE instrument at the ESO VLT. We cover the two regions in this system which exhibit recent star formation: the central galaxy interaction and a region near the tip of the southern tidal tail. In these fields, we detect H II regions and diffuse ionized gas to unprecedented depth. About 15\% of the ionized gas was undetected by previous observing campaigns. This newly detected faint ionized gas is visible everywhere around the central merger, and shows filamentary structure. We estimate diffuse gas fractions of about 60\% in the central field and 10\% in the southern region. We are able to show that the southern region contains a significantly different population of H II regions, showing fainter luminosities. By comparing H II region luminosities with the HST catalog of young star clusters in the central field, we estimate that there is enough Lyman-continuum leakage in the merger to explain the amount of diffuse ionized gas that we detect. We compare the Lyman-continuum escape fraction of each H II region against emission line ratios that are sensitive to the ionization parameter. While we find no systematic trend between these properties, the most extreme line ratios seem to be strong indicators of density bounded ionization. Extrapolating the Lyman-continuum escape fractions to the southern region, we conclude that simply from the comparison of the young stellar populations to the ionized gas there is no need to invoke other ionization mechanisms than Lyman-continuum leaking H II regions for the diffuse ionized gas in the Antennae.}, language = {en} } @article{KroescheCrescenziHoffbaueretal.1994, author = {Kr{\"o}sche, Christian and Crescenzi, Orlando and Hoffbauer, Wilfried and Jansen, Martin and Napolitano, Alessandra and Prota, Guiseppe and Peter, Martin G.}, title = {Synthesis of dopamines labelled with 13C in the alpha- or beta-side chain positions, and their application for structure studies on melanins by solid state NMR spectroscopy}, year = {1994}, language = {en} } @misc{LachmairRuizFernandezBuryetal.2016, author = {Lachmair, Martin and Ruiz Fernandez, Susana and Bury, Nils-Alexander and Gerjets, Peter and Fischer, Martin H. and Bock, Otmar L.}, title = {How body orientation affects concepts of space, time and valence}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {505}, issn = {1866-8364}, doi = {10.25932/publishup-41094}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410942}, pages = {16}, year = {2016}, abstract = {The aim of the present study was to test the functional relevance of the spatial concepts UP or DOWN for words that use these concepts either literally (space) or metaphorically (time, valence). A functional relevance would imply a symmetrical relationship between the spatial concepts and words related to these concepts, showing that processing words activate the related spatial concepts on one hand, but also that an activation of the concepts will ease the retrieval of a related word on the other. For the latter, the rotation angle of participant's body position was manipulated either to an upright or a head-down tilted body position to activate the related spatial concept. Afterwards participants produced in a within-subject design previously memorized words of the concepts space, time and valence according to the pace of a metronome. All words were related either to the spatial concept UP or DOWN. The results including Bayesian analyses show (1) a significant interaction between body position and words using the concepts UP and DOWN literally, (2) a marginal significant interaction between body position and temporal words and (3) no effect between body position and valence words. However, post-hoc analyses suggest no difference between experiments. Thus, the authors concluded that integrating sensorimotor experiences is indeed of functional relevance for all three concepts of space, time and valence. However, the strength of this functional relevance depends on how close words are linked to mental concepts representing vertical space.}, language = {en} } @article{SoliveresvanderPlasManningetal.2016, author = {Soliveres, Santiago and van der Plas, Fons and Manning, Peter and Prati, Daniel and Gossner, Martin M. and Renner, Swen C. and Alt, Fabian and Arndt, Hartmut and Baumgartner, Vanessa and Binkenstein, Julia and Birkhofer, Klaus and Blaser, Stefan and Bl{\"u}thgen, Nico and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Buscot, Francois and Diek{\"o}tter, Tim and Heinze, Johannes and H{\"o}lzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Kleinebecker, Till and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Oelmann, Yvonne and Overmann, J{\"o}rg and Pasalic, Esther and Rillig, Matthias C. and Schaefer, H. Martin and Schloter, Michael and Schmitt, Barbara and Sch{\"o}ning, Ingo and Schrumpf, Marion and Sikorski, Johannes and Socher, Stephanie A. and Solly, Emily F. and Sonnemann, Ilja and Sorkau, Elisabeth and Steckel, Juliane and Steffan-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and T{\"u}rke, Manfred and Venter, Paul C. and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Fischer, Markus and Allan, Eric}, title = {Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality}, series = {Nature : the international weekly journal of science}, volume = {536}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/nature19092}, pages = {456 -- +}, year = {2016}, language = {en} } @article{LachmairFernandezBuryetal.2016, author = {Lachmair, Martin and Fernandez, Susana Ruiz and Bury, Nils-Alexander and Gerjets, Peter and Fischer, Martin H. and Bock, Otmar L.}, title = {How Body Orientation Affects Concepts of Space, Time and Valence: Functional Relevance of Integrating Sensorimotor Experiences during Word Processing}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0165795}, pages = {16}, year = {2016}, language = {en} } @article{HusserKamannDreizleretal.2016, author = {Husser, Tim-Oliver and Kamann, Sebastian and Dreizler, Stefan and Wendt, Martin and Wulff, Nina and Bacon, Roland and Wisotzki, Lutz and Brinchmann, Jarle and Weilbacher, Peter Michael and Roth, Martin M. and Monreal-Ibero, Ana}, title = {MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397 I. The first comprehensive HRD of a globular cluster}, series = {Nucleic acids research}, volume = {588}, journal = {Nucleic acids research}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201526949}, pages = {14}, year = {2016}, abstract = {Aims. We demonstrate the high multiplex advantage of crowded field 3D spectroscopy with the new integral field spectrograph MUSE by means of a spectroscopic analysis of more than 12 000 individual stars in the globular cluster NGC 6397. Methods. The stars are deblended with a point spread function fitting technique, using a photometric reference catalogue from HST as prior, including relative positions and brightnesses. This catalogue is also used for a first analysis of the extracted spectra, followed by an automatic in-depth analysis via a full-spectrum fitting method based on a large grid of PHOENIX spectra. Results. We analysed the largest sample so far available for a single globular cluster of 18 932 spectra from 12 307 stars in NGC 6397. We derived a mean radial velocity of v(rad) = 17.84 +/- 0.07 km s(-1) and a mean metallicity of [Fe/H] = -2.120 +/- 0.002, with the latter seemingly varying with temperature for stars on the red giant branch (RGB). We determine Teff and [Fe/H] from the spectra, and log g from HST photometry. This is the first very comprehensive Hertzsprung-Russell diagram (HRD) for a globular cluster based on the analysis of several thousands of stellar spectra, ranging from the main sequence to the tip of the RGB. Furthermore, two interesting objects were identified; one is a post-AGB star and the other is a possible millisecond-pulsar companion.}, language = {en} } @article{HerderUtechtManickeetal.2013, author = {Herder, Martin and Utecht, Manuel Martin and Manicke, Nicole and Grubert, Lutz and P{\"a}tzel, Michael and Saalfrank, Peter and Hecht, Stefan}, title = {Switching with orthogonal stimuli electrochemical ring-closure and photochemical ring-opening of bis(thiazolyl) maleimides}, series = {Chemical science}, volume = {4}, journal = {Chemical science}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2041-6520}, doi = {10.1039/c2sc21681g}, pages = {1028 -- 1040}, year = {2013}, abstract = {The photochemistry as well as electrochemistry of novel donor-acceptor bis(morpholinothiazolyl)maleimides has been investigated. Proper substitution of these diarylethene-type molecular switches leads to the unique situation in which their ring-closure can only be accomplished electrochemically, while ring-opening can only be achieved photochemically. Hence, these switches operate with orthogonal stimuli, i.e. redox potential and light, respectively. The switch system could be optimized by introducing trifluoromethyl groups at the reactive carbon atoms in order to avoid by-product formation during oxidative ring closure. Both photochemical and electrochemical pathways were investigated for methylated, trifluoromethylated, and nonsymmetrical bis(morpholinothiazolyl) maleimides as well as the bis(morpholinothiazolyl) cyclopentene reference compound. With the aid of the nonsymmetrical "mixed" derivative, the mechanism of electrochemically driven ring closure could be elucidated and seems to proceed via a dicationic intermediate generated by two-fold oxidation. All experimental work has been complemented by density functional theory that provides detailed insights into the thermodynamics of the ring-open and closed forms, the nature of their excited states, and the reactivity of their neutral as well as ionized species in different electronic configurations. The particular diarylethene systems described herein could serve in multifunctional (logic) devices operated by different stimuli (inputs) and may pave the way to converting light into electrical energy via photoinduced "pumping" of redox-active meta-stable states.}, language = {en} } @misc{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-81198}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10-18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @article{LuoUtechtDokicetal.2011, author = {Luo, Ying and Utecht, Manuel Martin and Dokic, Jadranka and Korchak, Sergey and Vieth, Hans-Martin and Haag, Rainer and Saalfrank, Peter}, title = {Cis-trans isomerisation of substituted aromatic imines a comparative experimental and theoretical study}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {12}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201100179}, pages = {2311 -- 2321}, year = {2011}, abstract = {The cis-trans isomerisation of N-benzylideneaniline (NBA) and derivatives containing a central C=N bond has been investigated experimentally and theoretically. Eight different NBA molecules in three different solvents were irradiated to enforce a photochemical trans (hv) -> cis isomerisation and the kinetics of the thermal backreaction cis (Delta)-> trans were determined by NMR spectroscopy measurements in the temperature range between 193 and 288 K. Theoretical calculations using density functional theory and Eyring transition-state theory were carried out for 12 different NBA species in the gas phase and three different solvents to compute thermal isomerisation rates of the thermal back reaction. While the computed absolute rates are too large, they reveal and explain experimental trends. Time-dependent density functional theory provides optical spectra for vertical transitions and excitation energy differences between trans and cis forms. Together with isomerisation rates, the latter can be used to identify "optimal switches" with good photochromicity and reasonable thermal stability.}, language = {en} } @article{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {17}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {27}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp03093e}, pages = {18079 -- 18086}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10(-18) cm(2) for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @article{SchulzeUtechtMoldtetal.2015, author = {Schulze, Michael and Utecht, Manuel Martin and Moldt, Thomas and Przyrembel, Daniel and Gahl, Cornelius and Weinelt, Martin and Saalfrank, Peter and Tegeder, Petra}, title = {Nonlinear optical response of photochromic azobenzene-functionalized self-assembled monolayers}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, volume = {27}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European Chemical Societies}, number = {17}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c5cp03093e}, pages = {18079 -- 18086}, year = {2015}, abstract = {The combination of photochromic and nonlinear optical (NLO) properties of azobenzene-functionalized self-assembled monolayers (SAMs) constitutes an intriguing step towards novel photonic and optoelectronic devices. By utilizing the second-order NLO process of second harmonic generation (SHG), supported by density-functional theory and correlated wave function method calculations, we demonstrate that the photochromic interface provides the necessary prerequisites en route towards possible future technical applications: we find a high NLO contrast on the order of 16\% between the switching states. These are furthermore accessible reversibly and with high efficiencies in terms of cross sections on the order of 10-18 cm2 for both photoisomerization reactions, i.e., drivable by means of low-power LED light sources. Finally, both photostationary states (PSSs) are thermally stable at ambient conditions.}, language = {en} } @misc{VolkMarkertRiejoketal.2006, author = {Volk, Benno and Markert, Doreen and Riejok, Henriette and Dittberner, J{\"u}rgen and Wanka, Johanna and Wilkens, Martin and G{\"o}rtemaker, Manfred and Regierer, Babette and Steup, Martin and M{\"u}ller-R{\"o}ber, Bernd and Wernicke, Matthias and Altenberger, Uwe and St{\"o}lting, Erhard and Fer{\´y}, Carolin and Egenter, Peter and Lenz, Claudia and Jakubowski, Zuzanna and Kl{\"o}tzer, Sylvia and Krause, Michael and Dietsch, Ulrich}, title = {Portal = Vor der Pr{\"a}sidenten-Wahl: Erwartungen, W{\"u}nsche, Vorschl{\"a}ge}, number = {04-05/2006}, organization = {Universit{\"a}t Potsdam, Referat f{\"u}r Presse- und {\"O}ffentlichkeitsarbeit}, issn = {1618-6893}, doi = {10.25932/publishup-44000}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440005}, pages = {50}, year = {2006}, abstract = {Aus dem Inhalt: - Vor der Pr{\"a}sidenten-Wahl: Erwartungen, W{\"u}nsche, Vorschl{\"a}ge - Der AStA in der Krise? - {\"U}ber Satire und Macht in der DDR - Vom F{\"u}nf-Sterne-Koch zum Mensaleiter}, language = {de} } @misc{AbramowskiAharonianBenkhalietal.2015, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Backes, Michael and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, Julia Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, Konrad and Birsin, E. and Biteau, Jonathan and B{\"o}ttcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Chadwick, Paula M. and Chakraborty, Nachiketa and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, Claire and Cui, Yudong and Davids, Isak Delberth and Degrange, Bernhard and Deil, Christoph and deWilt, P. and Djannati-Ata{\"i}, A. and Domainko, Wilfried and Donath, Axel and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, Tanya and Egberts, Kathrin and Eger, Peter and Espigat, P. and Farnier, C. and Fegan, Stephen and Feinstein, Fabrice and Fernandes, Milton Virgilio and Fernandez, Diane and Fiasson, A. and Fontaine, Gerard and F{\"o}rster, Andreas and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Yves A. and Garrigoux, Tania and Giavitto, G. and Giebels, Berrie and Glicenstein, Jean-Francois and Gottschall, Daniel and Grondin, M. -H. and Grudzinska, M. and Hadasch, Daniela and Haeffner, S. and Hahn, Joachim and Harris, Jonathan and Heinzelmann, G{\"o}tz and Henri, G. and Hermann, German and Hervet, O. and Hillert, Andreas and Hinton, James Anthony and Hofmann, Werner and Hofverberg, Petter and Holler, Markus and Horns, Dieter and Ivascenko, Alex and Jacholkowska, A. and Jahn, C. and Jamrozy, Marek and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieck, Max Anton and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, Michel and Klepser, S. and Klochkov, Dmitry and Kluzniak, W. and Kolitzus, David and Komin, Nu and Kosack, Karl and Krakau, Steffen and Krayzel, F. and Krueger, Pat P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lefranc, Valentin and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, Thomas and Lopatin, A. and Lu, Chia-Chun and Marandon, Vincent and Marcowith, Alexandre and Marx, Ramin and Maurin, G. and Maxted, Nigel and Mayer, Michael and McComb, T. J. Lowry and Mehault, J. and Meintjes, P. J. and Menzler, Ulf and Meyer, M. and Mitchell, Alison M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, Thomas and de Naurois, Mathieu and Niemiec, J. and Nolan, Sam J. and Oakes, Louise and Odaka, Hirokazu and Ohm, S. and Optiz, Bj{\"o}rn and Ostrowski, Michal and Oya, I. and Panter, Michael and Parsons, R. Daniel and Arribas, M. Paz and Pekeur, Nikki W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, Helen and P{\"u}hlhofer, Gerd and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, Anita and Reimer, Olaf and Renaud, Metz and de los Reyes, Raquel and Rieger, Frank and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, Vardan and Salek, D. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, Reinhard and Schuessler, F. and Schulz, A. and Schwanke, Ullrich and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spanier, Felix and Spengler, G. and Spies, Franziska and Stawarz, Lukasz and Steenkamp, Riaan and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, Martin and Trichard, C. and Valerius, K. and van Eldik, C. and van Soelen, B. and Vasileiadis, Georges and Veh, J. and Venter, Christo and Viana, Aion and Vincent, P. and Vink, Jacco and V{\"o}lk, Heinrich J. and Volpe, Francesca and Vorster, Martine and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Ward, Martin and Weidinger, Matthias and Weitzel, Quirin and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, Ruizhi and Zabalza, Victor and Zaborov, Dmitry and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zechlin, Hannes -S.}, title = {H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud (vol 574, A100, 2015)}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {580}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201425070e}, pages = {2}, year = {2015}, language = {en} } @article{SoliveresManningPratietal.2016, author = {Soliveres, Santiago and Manning, Peter and Prati, Daniel and Gossner, Martin M. and Alt, Fabian and Arndt, Hartmut and Baumgartner, Vanessa and Binkenstein, Julia and Birkhofer, Klaus and Blaser, Stefan and Bluethgen, Nico and Boch, Steffen and Boehm, Stefan and Boerschig, Carmen and Buscot, Francois and Diekoetter, Tim and Heinze, Johannes and Hoelzel, Norbert and Jung, Kirsten and Klaus, Valentin H. and Klein, Alexandra-Maria and Kleinebecker, Till and Klemmer, Sandra and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and Mueller, Joerg and Oelmann, Yvonne and Overmann, J{\"o}rg and Pasalic, Esther and Renner, Swen C. and Rillig, Matthias C. and Schaefer, H. Martin and Schloter, Michael and Schmitt, Barbara and Schoening, Ingo and Schrumpf, Marion and Sikorski, Johannes and Socher, Stephanie A. and Solly, Emily F. and Sonnemann, Ilja and Sorkau, Elisabeth and Steckel, Juliane and Steffan-Dewenter, Ingolf and Stempfhuber, Barbara and Tschapka, Marco and Tuerke, Manfred and Venter, Paul and Weiner, Christiane N. and Weisser, Wolfgang W. and Werner, Michael and Westphal, Catrin and Wilcke, Wolfgang and Wolters, Volkmar and Wubet, Tesfaye and Wurst, Susanne and Fischer, Markus and Allan, Eric}, title = {Locally rare species influence grassland ecosystem multifunctionality}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {371}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2015.0269}, pages = {3175 -- 3185}, year = {2016}, abstract = {Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6\% of the species tested. Species specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.}, language = {en} } @article{AllanBossdorfDormannetal.2014, author = {Allan, Eric and Bossdorf, Oliver and Dormann, Carsten F. and Prati, Daniel and Gossner, Martin M. and Tscharntke, Teja and Bl{\"u}thgen, Nico and Bellach, Michaela and Birkhofer, Klaus and Boch, Steffen and B{\"o}hm, Stefan and B{\"o}rschig, Carmen and Chatzinotas, Antonis and Christ, Sabina and Daniel, Rolf and Diek{\"o}tter, Tim and Fischer, Christiane and Friedl, Thomas and Glaser, Karin and Hallmann, Christine and Hodac, Ladislav and H{\"o}lzel, Norbert and Jung, Kirsten and Klein, Alexandra-Maria and Klaus, Valentin H. and Kleinebecker, Till and Krauss, Jochen and Lange, Markus and Morris, E. Kathryn and M{\"u}ller, J{\"o}rg and Nacke, Heiko and Pasalic, Esther and Rillig, Matthias C. and Rothenwoehrer, Christoph and Schally, Peter and Scherber, Christoph and Schulze, Waltraud X. and Socher, Stephanie A. and Steckel, Juliane and Steffan-Dewenter, Ingolf and T{\"u}rke, Manfred and Weiner, Christiane N. and Werner, Michael and Westphal, Catrin and Wolters, Volkmar and Wubet, Tesfaye and Gockel, Sonja and Gorke, Martin and Hemp, Andreas and Renner, Swen C. and Sch{\"o}ning, Ingo and Pfeiffer, Simone and K{\"o}nig-Ries, Birgitta and Buscot, Francois and Linsenmair, Karl Eduard and Schulze, Ernst-Detlef and Weisser, Wolfgang W. and Fischer, Markus}, title = {Interannual variation in land-use intensity enhances grassland multidiversity}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {111}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {1}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1312213111}, pages = {308 -- 313}, year = {2014}, abstract = {Although temporal heterogeneity is a well-accepted driver of biodiversity, effects of interannual variation in land-use intensity (LUI) have not been addressed yet. Additionally, responses to land use can differ greatly among different organisms; therefore, overall effects of land-use on total local biodiversity are hardly known. To test for effects of LUI (quantified as the combined intensity of fertilization, grazing, and mowing) and interannual variation in LUI (SD in LUI across time), we introduce a unique measure of whole-ecosystem biodiversity, multidiversity. This synthesizes individual diversity measures across up to 49 taxonomic groups of plants, animals, fungi, and bacteria from 150 grasslands. Multidiversity declined with increasing LUI among grasslands, particularly for rarer species and aboveground organisms, whereas common species and belowground groups were less sensitive. However, a high level of interannual variation in LUI increased overall multidiversity at low LUI and was even more beneficial for rarer species because it slowed the rate at which the multidiversity of rare species declined with increasing LUI. In more intensively managed grasslands, the diversity of rarer species was, on average, 18\% of the maximum diversity across all grasslands when LUI was static over time but increased to 31\% of the maximum when LUI changed maximally over time. In addition to decreasing overall LUI, we suggest varying LUI across years as a complementary strategy to promote biodiversity conservation.}, language = {en} } @article{SchroetterBoucheZabletal.2019, author = {Schroetter, Ilane and Bouche, Nicolas F. and Zabl, Johannes and Contini, Thierry and Wendt, Martin and Schaye, Joop and Mitchell, Peter and Muzahid, Sowgat and Marino, Raffaella Anna and Bacon, Roland and Lilly, Simon J. and Richard, Johan and Wisotzki, Lutz}, title = {MusE GAs FLOw andWind (MEGAFLOW)}, series = {Monthly notices of the Royal Astronomical Society}, volume = {490}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz2822}, pages = {4368 -- 4381}, year = {2019}, abstract = {We present results from our on-going MusE GAs FLOw and Wind (MEGAFLOW) survey, which consists of 22 quasar lines of sight, each observed with the integral field unit MUSE and the UVES spectrograph at the ESO Very Large Telescopes (VLT). The goals of this survey are to study the properties of the circumgalactic medium around z similar to 1 star-forming galaxies. The absorption-line selected survey consists of 79 strong MgII absorbers (with rest-frame equivalent width greater than or similar to 0.3 angstrom) and, currently, 86 associated galaxies within 100 projected kpc of the quasar with stellar masses (M-star) from 109 to 1011 M-circle dot. We find that the cool halo gas traced by MgII is not isotropically distributed around these galaxies from the strong bi-modal distribution in the azimuthal angle of the apparent location of the quasar with respect to the galaxy major axis. This supports a scenario in which outflows are bi-conical in nature and co-exist with a co-planar gaseous structure extending at least up to 60-80 kpc. Assuming that absorbers near the minor axis probe outflows, the current MEGAFLOW sample allowed us to select 26 galaxy-quasar pairs suitable for studying winds. From this sample, using a simple geometrical model, we find that the outflow velocity only exceeds the escape velocity when M-star less than or similar to 4 x 10(9) M-circle dot, implying the cool material is likely to fall back except in the smallest haloes. Finally, we find that the mass loading factor., the ratio between the ejected mass rate and the star formation rate, appears to be roughly constant with respect to the galaxy mass.}, language = {en} } @article{LatourHusserGiesersetal.2019, author = {Latour, Marlyn and Husser, Tim Oliver and Giesers, Benjamin David and Kamann, S. and G{\"o}ttgens, Fabian and Dreizler, Stefan and Brinchmann, Jan and Bastian, Nate and Wendt, Martin and Weilbacher, Peter Michael and Molinski, N. S.}, title = {A stellar census in globular clusters with MUSE: multiple populations chemistry in NGC 2808 star star star}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {631}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201936242}, pages = {14}, year = {2019}, abstract = {Context. Galactic globular clusters (GCs) are now known to host multiple populations displaying particular abundance variations. The different populations within a GC can be well distinguished following their position in the pseudo two-colors diagrams, also referred to as "chromosome maps". These maps are constructed using optical and near-UV photometry available from the Hubble Space Telescope (HST) UV survey of GCs. However, the chemical tagging of the various populations in the chromosome maps is hampered by the fact that HST photometry and elemental abundances are both only available for a limited number of stars. Aims. The spectra collected as part of the MUSE survey of globular clusters provide a spectroscopic counterpart to the HST photometric catalogs covering the central regions of GCs. In this paper, we use the MUSE spectra of 1115 red giant branch (RGB) stars in NGC 2808 to characterize the abundance variations seen in the multiple populations of this cluster. Methods. We used the chromosome map of NGC 2808 to divide the RGB stars into their respective populations. We then combined the spectra of all stars belonging to a given population, resulting in one high signal-to-noise ratio spectrum representative of each population. Results. Variations in the spectral lines of O, Na, Mg, and Al are clearly detected among four of the populations. In order to quantify these variations, we measured equivalent width differences and created synthetic populations spectra that were used to determine abundance variations with respect to the primordial population of the cluster. Our results are in good agreement with the values expected from previous studies based on high-resolution spectroscopy. We do not see any significant variations in the spectral lines of Ca, K, and Ba. We also do not detect abundance variations among the stars belonging to the primordial population of NGC 2808. Conclusions. We demonstrate that in spite of their low resolution, the MUSE spectra can be used to investigate abundance variations in the context of multiple populations.}, language = {en} } @article{WunderKutzschbachHosseetal.2018, author = {Wunder, Bernd and Kutzschbach, Martin and Hosse, Luisa and Wilke, Franziska Daniela Helena and Schertl, Hans-Peter and Chopin, Christian}, title = {Synthetic B-[4]-bearing dumortierite and natural B-[4]-free magnesiodumortierite from the Dora-Maira Massif}, series = {European journal of mineralogy}, volume = {30}, journal = {European journal of mineralogy}, number = {3}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0935-1221}, doi = {10.1127/ejm/2018/0030-2742}, pages = {471 -- 483}, year = {2018}, abstract = {Dumortierite was synthesized in piston-cylinder experiments at 2.5-4.0 GPa, 650-700 degrees C in the Al2O3 -B2O3-SiO2-H2O (ABSH) system. Electron-microprobe (EMP) analyses reveal significant boron-excess (up to 0.26 B-[4] per formula unit, pfu) and silicon-deficiency relative to the ideal anhydrous dumortierite stoichiometry Al7BSi3O18 . The EMP data in conjunction with results from single-crystal Raman spectroscopy and powder X-ray diffraction provide evidence that silicon at the tetrahedral site is replaced by excess boron via the substitution Si-[4] <--> B-[4] + H. The Raman spectrum of synthetic dumortierite in the frequency region 2000 4000 cm(-1) comprises eight bands, of which six are located at frequencies below 3400 cm(-1). This points to strong hydrogen bonding, most likely O2-H center dot center dot center dot O7 and O7-H center dot center dot center dot O2, arising from a high number of octahedral vacancies at the All site and substitution of trivalent Al3+ and B3+ for Si4+ at Si1 and Si2 sites, causing decreasing acceptor-donor distances and lower incident valence at the acceptor oxygen. Contrary to the synthetic high-pressure ABSH-dumortierite, magnesiodumortierite from the Dora-Maira Massif, which is assumed to have formed at similar conditions (2.5-3.0 GPa, 700 degrees C), does not show any B-excess. Tourmaline shows an analogous behaviour in that magnesium-rich (e.g., dravitic) tourmaline formed at high pressure shows no or only minor amounts of tetrahedral boron, whereas natural aluminum-rich tourmaline and synthetic olenitic tourmaline formed at high pressures can incorporate significant amounts of tetrahedral boron. Two mechanisms might account for this discrepancy: (i) Structural avoidance of Mg-[6]-(OR3+)-R-[4] configurations in magnesiodumortierite due to charge deficieny at the oxygens O2 and O7 and strong local distortion of M1 due to decreased O2-O7 bond length, and/or (ii) decreasing fluid mobility of boron in Al-rich systems at high pressures.}, language = {en} } @article{MonrealIberoWeilbacherWendt2018, author = {Monreal-Ibero, Ana and Weilbacher, Peter Michael and Wendt, Martin}, title = {Diffuse interstellar bands lambda 5780 and lambda 5797 in the Antennae Galaxy as seen by MUSE}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {615}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201732178}, pages = {12}, year = {2018}, abstract = {Context. Diffuse interstellar bands (DIBs) are faint spectral absorption features of unknown origin. Research on DIBs beyond the Local Group is very limited and will surely blossom in the era of the Extremely Large Telescopes. However, we can already start paving the way. One possibility that needs to be explored is the use of high-sensitivity integral field spectrographs. Aims. Our goals are twofold. First, we aim to derive reliable mapping of at least one DIB in a galaxy outside the Local Group. Second, we want to explore the relation between DIBs and other properties of the interstellar medium (ISM) in the galaxy. Methods. We use Multi Unit Spectroscopic Explorer (MUSE) data for the Antennae Galaxy, the closest major galaxy merger. High signal-to-noise spectra were created by co-adding the signal of many spatial elements with the Voronoi binning technique. The emission of the underlying stellar population was modelled and substracted with the STARLIGHT spectral synthesis code. Flux and equivalent width of the features of interest were measured by means of fitting to Gaussian functions. Conclusions. The results illustrate the enormous potential of integral field spectrographs for extragalactic DIB research.}, language = {en} } @article{KutzschbachGuttmannMarquardtetal.2018, author = {Kutzschbach, Martin and Guttmann, Peter and Marquardt, K. and Werner, S. and Henzler, K. D. and Wilke, Max}, title = {A transmission x-ray microscopy and NEXAFS approach for studying corroded silicate glasses at the nanometre scale}, series = {European journal of glass science and technology / Deutsche Glastechnische Gesellschaft (DGG) and the Society of Glass Technology (SGT). B, Physics and chemistry of glasses}, volume = {59}, journal = {European journal of glass science and technology / Deutsche Glastechnische Gesellschaft (DGG) and the Society of Glass Technology (SGT). B, Physics and chemistry of glasses}, number = {1}, publisher = {Society of Glass Technology}, address = {Sheffield}, issn = {1753-3562}, doi = {10.13036/17533562.59.1.043}, pages = {11 -- 26}, year = {2018}, abstract = {In this study transmission X-ray microscopy (TXM) was tested as a method to investigate the chemistry and structure of corroded silicate glasses at the nanometer scale. Three different silicate glasses were altered in static corrosion experiments for 1-336 hours at temperatures between 60 degrees C and 85 degrees C using a 25\% HCl solution. Thin lamellas were cut perpendicular to the surface of corroded glass monoliths and were analysed with conventional TEM as well as with TXM. By recording optical density profiles at photon energies around the Na and O K-edges, the shape of the corrosion rim/pristine glass interfaces and the thickness of the corrosion rims has been determined. Na and O near-edge X-ray absorption fine-structure spectra (NEXAFS) were obtained without inducing irradiation damage and have been used to detect chemical changes in the corrosion rims. Spatially resolved NEXAFS spectra at the O K-edge provided insight to structural changes in the corrosion layer on the atomic scale. By comparison to O K-edge spectra of silicate minerals and (hydrous) albite glass as well as to O K-edge NEXAFS of model structures simulated with ab initio calculations, evidence is provided that changes of the fine structure at the O K-edge are assigned to the formation of siloxane groups in the corrosion rim.}, language = {en} } @misc{NickersonAtalagdeBonoetal.2016, author = {Nickerson, David and Atalag, Koray and de Bono, Bernard and Geiger, Joerg and Goble, Carole and Hollmann, Susanne and Lonien, Joachim and Mueller, Wolfgang and Regierer, Babette and Stanford, Natalie J. and Golebiewski, Martin and Hunter, Peter}, title = {The Human Physiome: how standards, software and innovative service infrastructures are providing the building blocks to make it achievable}, series = {Interface focus}, volume = {6}, journal = {Interface focus}, publisher = {Royal Society}, address = {London}, issn = {2042-8898}, doi = {10.1098/rsfs.2015.0103}, pages = {57 -- 61}, year = {2016}, abstract = {Reconstructing and understanding the Human Physiome virtually is a complex mathematical problem, and a highly demanding computational challenge. Mathematical models spanning from the molecular level through to whole populations of individuals must be integrated, then personalized. This requires interoperability with multiple disparate and geographically separated data sources, and myriad computational software tools. Extracting and producing knowledge from such sources, even when the databases and software are readily available, is a challenging task. Despite the difficulties, researchers must frequently perform these tasks so that available knowledge can be continually integrated into the common framework required to realize the Human Physiome. Software and infrastructures that support the communities that generate these, together with their underlying standards to format, describe and interlink the corresponding data and computer models, are pivotal to the Human Physiome being realized. They provide the foundations for integrating, exchanging and re-using data and models efficiently, and correctly, while also supporting the dissemination of growing knowledge in these forms. In this paper, we explore the standards, software tooling, repositories and infrastructures that support this work, and detail what makes them vital to realizing the Human Physiome.}, language = {en} } @book{FriessLenzMartinetal.2016, author = {Frieß, Nina and Lenz, Gunnar and Martin, Erik and Antoš{\´i}kov{\´a}, Lucie and Bainczyk-Crescentini, Marlene and Chkhaidze, Elena and Gladis, Lea and Stickel, Hanna and Kohl, Philipp and Kowollik, Eva and Matijević, Tijana and Schimsheimer, Christof and Simić, Dijana and Sulikowska-Fajfer, Joanna and Zalkowski, Olesia and Ananka, Yaraslava and Blum, Bianca Edith and F{\"a}rber, Christina and Gorfinkel, Olga and Hoy, Therese and Reinecke, Willi and Salden, Peter and Schmitt, Angelika}, title = {Grenzr{\"a}ume - Grenzbewegungen}, number = {1}, editor = {Frieß, Nina and Lenz, Gunnar and Martin, Erik}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-358-9}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86769}, publisher = {Universit{\"a}t Potsdam}, pages = {286}, year = {2016}, abstract = {Der vorliegende Sammelband vereinigt die Beitr{\"a}ge der 12. und 13. Tagung des Jungen Forums Slavistische Literaturwissenschaft (JFSL) in Basel 2013 und Frankfurt (Oder) und Słubice 2014. Unter den thematischen Leitbegriffen Grenzr{\"a}ume - Grenzbewegungen pr{\"a}sentiert er Einblicke in die Arbeit von Nachwuchswissenschaftlerinnen und -wissenschaftlern der deutsch­sprachigen slavischen Literatur- und Kulturwissenschaft.}, language = {de} } @book{HeimannNeitmannSchichetal.2007, author = {Heimann, Heinz-Dieter and Neitmann, Klaus and Schich, Winfried and Bauch, Martin and Franke, Ellen and Gahlbeck, Christian and Popp, Christian and Riedel, Peter}, title = {Brandenburgisches Klosterbuch : Handbuch der Kl{\"o}ster, Stifte und Kommenden bis zur Mitte des 16. Jahrhunderts}, series = {Brandenburgische Historische Studien}, volume = {14}, journal = {Brandenburgische Historische Studien}, publisher = {be.bra Wiss. Verl.}, address = {Berlin}, isbn = {978-3-937233-26-0}, pages = {1484 S.}, year = {2007}, language = {de} } @article{OstermeyerMudgeVeitchetal.2006, author = {Ostermeyer, Martin and Mudge, Damien and Veitch, Peter John and Munch, Jesper}, title = {Thermally induced birefringence in Nd : YAG slab lasers}, doi = {10.1364/AO.45.005368}, year = {2006}, abstract = {We study thermally induced birefringence in crystalline Nd:YAG zigzag slab lasers and the associated depolarization losses. The optimum crystallographic orientation of the zigzag slab within the Nd:YAG boule and photoelastic effects in crystalline Nd:YAG slabs are briefly discussed. The depolarization is evaluated using the temperature and stress distributions, calculated using a finite element model, for realistically pumped and cooled slabs of finite dimensions. Jones matrices are then used to calculate the depolarization of the zigzag laser mode. We compare the predictions with measurements of depolarization, and suggest useful criteria for the design of the gain media for such lasers.}, language = {en} } @article{PeikowMaternPeteretal.2005, author = {Peikow, Dirk and Matern, Christa-Maria and Peter, Martin G. and Schilde, Uwe}, title = {Crystal structure of (1,4,7,10,13-pentaoxacyclopentadecane-O,O ',O '',O ''')(trifluoromethanesulfonato-O,O ')sodium, Na(C10H20O5)(CF3SO3)}, year = {2005}, abstract = {C11H20F3NaO8S, monoclinic, P121/nil (no. 11), a = 7.947(1) angstrom, b = 12.056(1) angstrom, c = 9.083(1) angstrom, P = 106.01 (1)degrees, V = 836.4 angstrom(3), Z = 2, R-gt(F) = 0.043, wR(ref)(F-2) = 0.120, T = 210 K.}, language = {en} } @article{AlarconAldereteAguilaetal.2005, author = {Alarcon, Julio and Alderete, Joel B. and Aguila, Sergio and Peter, Martin G.}, title = {Regio and stereoselective hydroxylation of alpha-agarofuran by biotransformation of rhizopus nigricans}, year = {2005}, abstract = {A new synthesis of 9 alpha-hydroxy-alpha-agarofuran (6 alpha) is described, using a microbiological hydroxylation alpha-agarofuran (5) as the key reaction. The stereochemistry of the biohydroxylation was determined on the basis of a NOESY-experiment and GIAO calculations at the B3LYP/cc-pVDZ level. A strong gamma-effect was observed at C15 of the agarofuran ring which was correctly predicted by the GIAO-B3LYP calculations}, language = {en} } @article{FotieNkengfackPeteretal.2004, author = {Fotie, J. and Nkengfack, A. E. and Peter, Martin G. and Heydenreich, Matthias and Fomum, Z. T.}, title = {Chemical constituents of the ethyl acetate extracts of the stem bark and fruits of Dichrostachys cinerea and the roots of Parkia bicolor}, issn = {1011-3924}, year = {2004}, abstract = {The antibacterial activities of ethyl acetate, methanol and aqueous extracts of the stem bark of Dichrostachys cinerea and the roots of Parkia bicolor have been evaluated. Ethyl acetate extracts have been investigated, studies that led to a series of known compounds, amongst which many are reported here for the very first time from both the species}, language = {en} } @article{BerthDautzenbergPeter1998, author = {Berth, Gisela and Dautzenberg, Herbert and Peter, Martin G.}, title = {Physica-chemical characterization of chitosans in dilute solution}, isbn = {2-907922-57-2}, year = {1998}, language = {en} } @article{VaajeKolstadVasellaPeteretal.2004, author = {Vaaje-Kolstad, G. and Vasella, A. and Peter, Martin G. and Netter, C. and Houston, Douglas R. and Westereng, B. and Synstad, Bjoenar and Eijsink, Vincent G. H. and van Aalten, Daan M. F.}, title = {Interactions of a family 18 chitinase with the designed inhibitor HM508 and its degradation product, chitobiono- delta-lactone}, issn = {0021-9258}, year = {2004}, abstract = {We describe enzymological and structural analyses of the interaction between the family 18 chitinase ChiB from Serratia marcescens and the designed inhibitor N,N'-diacetylchitobionoxime-N-phenylcarbamate (HM508). HM508 acts as a competitive inhibitor of this enzyme with a K-i in the 50 muM range. Active site mutants of ChiB show K-i values ranging from 1 to 200 muM, providing insight into some of the interactions that determine inhibitor affinity. Interestingly, the wild type enzyme slowly degrades HM508, but the inhibitor is essentially stable in the presence of the moderately active D142N mutant of ChiB. The crystal structure of the D142N-HM508 complex revealed that the two sugar moieties bind to the -2 and -1 subsites, whereas the phenyl group interacts with aromatic side chains that line the +1 and +2 subsites. Enzymatic degradation of HM508, as well as a Trp-->Ala mutation in the +2 subsite of ChiB, led to reduced affinity for the inhibitor, showing that interactions between the phenyl group and the enzyme contribute to binding. Interestingly, a complex of enzymatically degraded HM508 with the wild type enzyme showed a chitobiono-delta- lactone bound in the -2 and -1 subsites, despite the fact that the equilibrium between the lactone and the hydroxy acid forms in solution lies far toward the latter. This shows that the active site preferentially binds the E-4 conformation of the -1 sugar, which resembles the proposed transition state of the reaction}, language = {en} } @article{VaajeKolstadHoustonRaoetal.2004, author = {Vaaje-Kolstad, G. and Houston, Douglas R. and Rao, F. V. and Peter, Martin G. and Synstad, Bjoenar and van Aalten, Daan M. F. and Eijsink, Vincent G. H.}, title = {Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin}, issn = {1570-9639}, year = {2004}, abstract = {Catalysis by ChiB, a family 18 chitinase from Serratia marcescens, involves a conformational change of Asp142 which is part of a characteristic D140XD142XE144 sequence motif In the free enzyme Asp142 points towards Asp140, whereas it rotates towards the catalytic acid, Glu144, upon ligand binding. Mutation of Asp142 to Asn reduced k(cat) and affinity for allosamidin, a competitive inhibitor. The X-ray structure of the D142N mutant showed that Asn142 points towards Glu144 in the absence of a ligand. The active site also showed other structural adjustments (Tyr10, Ser93) that had previously been observed in the wild-type enzyme upon substrate binding. The X-ray structure of a complex of D142N with allosamidin, a pseudotrisaccharide competitive inhibitor, was essentially identical to that of the wild-type enzyme in complex with the same compound. Thus, the reduced allosamidin affinity in the mutant is not caused by structural changes but solely by the loss of electrostatic interactions with Asp142. The importance of electrostatics was further confirmed by the pH dependence of catalysis and allosamidin inhibition. The pH-dependent apparent affinities for allosamidin were not correlated with k(cat), indicating that it is probably better to view the inhibitor as a mimic of the oxazolinium ion reaction intermediate than as a transition state analogue. (C) 2003 Elsevier B.V. All rights reserved}, language = {en} } @article{ZiemannSchmidtMirwald2004, author = {Ziemann, Martin Andreas and Schmidt, Christian and Mirwald, Peter W.}, title = {Raman spectroscopic study of the liquid-liquid transition in water}, issn = {0024-4937}, year = {2004}, language = {en} } @article{EijsinkSynstadGaseidnesetal.2003, author = {Eijsink, Vincent G. H. and Synstad, Bjoenar and Gaseidnes, Sigrid and Komander, David and Houston, Douglas R. and Peter, Martin G. and van Aalten, Daan M. F.}, title = {Structure and function of chitinolytic enzymes}, isbn = {82-471-5901-5}, year = {2003}, abstract = {The recent work on a variety of family 18 chitonolytic enzymes has yielded important data concerning the structure, substrate-binding, catalysis, inhibitor-binding and even dynamics. These data have been useful in helping to better understand the roles of various types of chitinases in chitin hydrolysis, to rationally engineer the properties of these enzymes, thus making them more suitable as biocatalysts, and to study and understand the effectiveness of natural and designed chitinase inhibitors, which may be of medical interest. On the other hand, the recent work on ChiB shows that catalysis in family 18 chitinases is a highly complicated process, involving larger parts of the enzyme and dynamics. Thus, despite recent discoveries, there is still a lot more to discover about how these enzyme work.}, language = {en} } @article{KleinFeldhahnLeeetal.2003, author = {Klein, Florian and Feldhahn, Niklas and Lee, Sanggyu and Wang, Hui and Ciuffi, Fiammetta and von Elstermann, Mirko and Toribio, Maria L. and Sauer, Heinrich and Wartenberg, Maria and Barath, Varun Singh and Kr{\"o}nke, Martin and Wernet, Peter and Rowley, Janet D. and M{\"u}schen, Markus}, title = {T lymphoid differentiation in human bone marrow}, year = {2003}, language = {en} } @article{KamlageSefkowZimmermannetal.2002, author = {Kamlage, Stefan and Sefkow, Michael and Zimmermann, Nicole and Peter, Martin G.}, title = {Concise synthesis of (+)-beta-benzyl gamma-butyrolactones from butynediol}, year = {2002}, language = {en} } @article{Peter2002, author = {Peter, Martin G.}, title = {Chitin and Chitosan from Animal Sources}, isbn = {3-527-30227-1}, year = {2002}, abstract = {A review on the chem. and biochem. of chitin and the chem. and application of chitosan. The following topics were discussed: structure of chitin and chitosan; occurrence and physiol. functions of chitin; detection of chitin in animals and anal. of chitin and chitosan; biosynthesis and biodegrdn. of chitin in animals; prodn. of chitin and chitosan; properties of chitin and chitosan; and applications of chitin and chitosan.}, language = {en} } @article{Peter2002, author = {Peter, Martin G.}, title = {Chitin and Chitosan from Fungi}, isbn = {3-527-30227-1}, year = {2002}, language = {en} } @misc{FerenzPeterBerg1983, author = {Ferenz, Hans-J{\"u}rgen and Peter, Martin G. and Berg, Dieter}, title = {Inhibition of farnesoic acid methyltransferase by sinefungin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17016}, year = {1983}, abstract = {Sinefungin inhibited the S-adenosylmethionine-dependent farnesoic acid methyltransferase in a cell-free system containing a homogenate of corpora allata from female locusts, Locusta migratoria. The enzyme catalyzed the penultimate step of juvenile hormone biosynthesis in the insects. Culturing corpora allata in the presence of sinefungin greatly suppressed juvenile hormone production. The following in vivo effects were visible after injection of the inhibitor: increase in mortality and reduction of total haemolymph protein liter and ovary fresh weight, as well as length of terminal oocytes. Attempts to reverse these effects by topical application of the juvenile hormone analog ZR-515 (methoprene) were only partly successful. Therefore, the in vivo effects may be due to a general inhibition of methyltransferase enzymes in the insect. Sinefungin appeared to be of potential interest as the first representative of a new class of insect growth regulators.}, language = {en} } @misc{KortPeterKoopmanschap1983, author = {Kort, C. A. D. de and Peter, Martin G. and Koopmanschap, A. B.}, title = {Binding and degradation of juvenile hormone III by haemolymph proteins of the Colorado potato beetle: a re-examination}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16777}, year = {1983}, abstract = {The haemolymph of the adult Colorado potato beetle, Lepinotarsa decemlineata Say, contains a high molecular weight (MW > 200,000) JH-III specific binding protein. The Kd value of the protein for racemic JH-III is 1.3 ± 0.2 × 10-7 M. It has a lower affinity for racemic JH-I and it does not bind JH-III-diol or JH-III-acid. The binding protein does discriminate between the enantiomers of synthetic, racemic JH-III as was determined by stereochemical anaysis of the bound and the free JH-III. Incubation of racemic JH-III with crude haemolymph results in preferential formation of (10S)-JH-III-acid, the unnatural configuration. The JH-esterase present in L. decemlineata haemolymph is not enantioselective. It is concluded that the most important function of the binding protein is that of a specific carrier, protecting the natural hormone against degradation by esterases. The carrier does not protect JH-I as efficiently as the lower homologue.}, language = {en} } @misc{PeterFoerster1989, author = {Peter, Martin G. and F{\"o}rster, Hans}, title = {On the structure of Eumelanins : identification of constitutional patterns by solid-state NMR spectroscopy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17027}, year = {1989}, abstract = {Aus dem Inhalt: Melanins are complex polyphenolic polymers. They are usually formed in nature by enzyme-catalyzed oxidative polymerization of o-diphenols. The deep black eumelanins, derived from Dopa 1 or dopamine 3, are distinguished from the yellow to brown phaeomelanins obtained from Dopa in the presence of cysteine. Characteristic of eumelanins are the indole units, which are formed from catecholamines by intramolecular addition of the amino groups to the oxidatively generated o-quinones. [...]}, language = {en} } @misc{OliveiraJrGueddariMoerschbacheretal.2008, author = {Oliveira Jr, E. N. and Gueddari, Nour E. El and Moerschbacher, Bruno M. and Peter, Martin and Franco, Telma}, title = {Growth of phytopathogenic fungi in the presence of partially acetylated chitooligosaccharides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42646}, year = {2008}, abstract = {Four phytopathogenic fungi were cultivated up to six days in media containing chitooligosaccharide mixtures differing in average DP and FA. The three different mixtures were named Q3 (which contained oligosaccharides ofDP2-DP10, withDP2-DP7 asmain components), Q2 (which contained oligosaccharides of DP2-DP12, with DP2-DP10 as main components) and Q1 (which derived from Q2 and contained oligomers of DP5-DP8 with hexamer and a heptamer as the main components). The novel aspect of this work is the description of the effect of mixtures of oligosaccharides with different and known composition on fungal growth rates. The growth rate of Alternaria alternata and Rhizopus stolonifer was initially inhibited by Q3 and Q2 at higher concentrations. Q1 had a growth stimulating effect on these two fungi. Growth of Botrytis cinerea was inhibited by Q3 and Q2, while Q1 had no effect on the growth of this fungus. Growth of Penicillium expansum was only slightly inhibited by higher concentrations of sample Q3, while Q2 and Q1 had no effect. The inhibition of growth rates or their resistance toward chitooligosaccharides correlated with the absence or presence of chitinolytic enzymes in the culture media, respectively.}, language = {en} } @article{WanjohiYenesewMidiwoetal.2005, author = {Wanjohi, John M. and Yenesew, Abiy and Midiwo, Jacob O. and Heydenreich, Matthias and Peter, Martin G. and Dreyer, M. and Reichert, M. and Bringmann, Gerhard}, title = {Three dimeric anthracene derivatives from the fruits of Bulbine abyssinica}, issn = {0040-4020}, year = {2005}, abstract = {From the fruits of Bulbine abyssinica three new dimeric anthracene derivatives, (P)-8,9,1',8'- tetrahydroxy-3,3'-dimethyl[10,7'-bianthracene]-1,4,9',10'- tetraone (trivial name abyquinone A), (10R)-1,4,8,1',8-pentahydroxy-3,3'-dimethyl-[10,7'-bianthracene]9,9',10' (10H)-trione (trivial name abyquinone B), and (10R)-3,4'-dihydro-1,4,8,3',8',9'-hexahydroxy-3,3'- dimethyl-[10,7'-biant hracene]9,1'(10H,2'H)-dione (trivial name abyquinone Q were isolated. Despite their structural differences, these three compounds are connected to each other by the apparently biomimetic conversion of abyquinone C (a preanthraquinonylanthrone with two stereogenic centers) into B (an anthraquinonylanthrone with one stereogenic center) and finally into A (an axially chiral bianthraquinone) under mild conditions, involving a highly efficient center-to-axis chirality transfer. In addition, the known anthraquinones islandicin and chrysophanol were identified. The structures were determined on the basis of spectroscopical evidences, chemical transformations, and quantum chemical CD calculations. (C) 2005 Elsevier Ltd. All rights reserved}, language = {en} } @article{YenesewKiplagatDereseetal.2006, author = {Yenesew, Abiy and Kiplagat, John T. and Derese, Solomon and Midiwo, Jacob O. and Kabaru, Jacques M. and Heydenreich, Matthias and Peter, Martin G.}, title = {Two unusual rotenoid derivatives, 7a-O-methyl-12a-hydroxydeguelol and spiro-13-homo-13-oxaelliptone, from the seeds of Derris trifoliata}, doi = {10.1016/j.phytochem.2006.01.002}, year = {2006}, abstract = {The crude methanol extract of the seeds of Derris trifoliata showed potent and dose dependent larvicidal activity against the 2nd instar larvae of Aedes aegypti. From this extract two unusual rotenoid derivatives, a rotenoloid (named 7a-O-methyl-12a-hydroxydeguelol) and a spirohomooxarotenoid (named spiro-13-homo-13-oxaelliptone), were isolated and characterised. In addition a rare natural chromanone (6,7-dimethoxy-4-chromanone) and the known rotenoids rotenone, tephrosin and dehydrodeguelin were identified. The structures were assigned on the basis of spectroscopic evidence. The larvicidal activity of the crude extract is mainly due to rotenone. (c) 2006 Elsevier Ltd. All rights reserved}, language = {en} } @article{YenesewMidiwoGuchuetal.2002, author = {Yenesew, Abiy and Midiwo, Jacob O. and Guchu, S. M. and Heydenreich, Matthias and Peter, Martin G.}, title = {Three iosoflav-3-enes and a 2-arylbenzofuran from the root bark of Erythrina burttii}, year = {2002}, abstract = {From the root bark of Erythrina burttii three new isoflav-3-enes, 7,4'-dihydroxy-2'-methoxy-6- (1'',1''-dimethylallyl)isoflav-3-ene (trivial name, burttinol-A), 4'-hydroxy-2'- methoxy-(2'',2''-dimethylpyrano[5'',6'':8,7]isoflav-3-ene (trivial name, burttinol-B), 7,4'-dihydroxy-2'-methoxy-8-(3'',3''-dimethylallyl)isoflav-3-ene (trivial name, burttinol-C), and a new 2-arylbenzofuran, 6,4'-dihydroxy-2'-methoxy-5- (1'',1''-dimethylallyl)-2-arylbenzofuran (trivial name, burttinol-D) were isolated. In addition, the known compounds, abyssinone V-4'-methyl ether, bidwillol A, calopocarpin, erybraedin A, erythrabyssin II, isobavachalcone, phaseollidin and phaseollin were identified. The structures were determined on the basis of spectroscopic evidence.}, language = {en} } @article{YenesewMushibeIndulietal.2005, author = {Yenesew, Abiy and Mushibe, E. K. and Induli, M. and Derese, Solomon and Midiwo, Jacob O. and Kabaru, Jacques M. and Heydenreich, Matthias and Koch, Andreas and Peter, Martin G.}, title = {7a-O-methyldeguelol, a modified rotenoid with an open ring-C, from the roots of Derris trifoloata}, issn = {0031-9422}, year = {2005}, abstract = {From the acetone extract of the roots of Derris trifoliata an isollavonoid derivative, named 7a-O- methyldeguelol, a modified rotenoid with an open ring-C, representing a new sub-class of isollavonoids (the sub-class is here named as rotenoloid), was isolated and characterised. In addition, the known rotenoids, rotenone, deguelin and alpha-toxicarol, were identified. The structures were determined on the basis of spectroscopic evidence. Rotenone and deguelin were identified as the larvicidal principles of the acetone extract of the roots of Derris trifoliata. (c) 2005 Elsevier Ltd. All rights reserved}, language = {en} } @article{YenesewIrunguDereseetal.2003, author = {Yenesew, Abiy and Irungu, Beatrice and Derese, Solomon and Midiwo, Jacob O. and Heydenreich, Matthias and Peter, Martin G.}, title = {Two prenylated flavonoids from the stem bark of Erythrina burttii}, year = {2003}, abstract = {From the stem bark of Erythrina burttii, a new isoflavone, 5,2',4'-trihydroxy-7-methoxy-6-(3- methylbut-2-enyl)isoflavone (trivial name, 7-O-methylluteone) and a new flavanone, 5,7-dihydroxy-4'-methoxy- 3'-(3-methylbutadienyl)-5'-(3-methylbut-2-enyl)flavanone (trivial name, burttinonedehydrate) along with three known isoflavonoids (8-prenylluteone, 3-O-methylcalopocarpin and genistein) were isolated. The structures were detd. on the basis of spectroscopic evidence.}, language = {en} } @article{YenesewDereseMidiwoetal.2005, author = {Yenesew, Abiy and Derese, Solomon and Midiwo, Jacob O. and Bii, Christine C. and Heydenreich, Matthias and Peter, Martin G.}, title = {Antimicrobial flavonoids from the stem bark of Erythrina burttii}, issn = {0367-326X}, year = {2005}, abstract = {The chloroform extract of the stem bark of Erythrina burttii showed antifungal and antibacterial activities using the disk diffusion method. Flavonoids were identified as the active principles. Activities were observed against fungi and Gram(+) bacteria, but the Gram(-) bacteria Escherichia coli was resistant. (c) 2005 Elsevier B.V. All rights reserved}, language = {en} } @phdthesis{DereseYenesewMidiwoetal.2003, author = {Derese, Solomon and Yenesew, Abiy and Midiwo, Jacob O. and Heydenreich, Matthias and Peter, Martin G.}, title = {A new isoflavone from stem bark of Millettia dura}, issn = {1011-3924}, year = {2003}, language = {en} } @article{YenesewMidiwoMeisneretal.1998, author = {Yenesew, Abiy and Midiwo, Jacob O. and Meisner, M. and Heydenreich, Matthias and Peter, Martin G.}, title = {Two prenylated flavanones from stem bark of erythrina burttii}, year = {1998}, language = {en} } @article{YenesewMidiwoHeydenreichetal.1998, author = {Yenesew, Abiy and Midiwo, Jacob O. and Heydenreich, Matthias and Peter, Martin G.}, title = {Four isoflavanones from stem bark of erythrina sacleuxii}, year = {1998}, language = {en} } @misc{BringmannMutanyattaComarMaksimenkaetal.2008, author = {Bringmann, Gerhard and Mutanyatta-Comar, Joan and Maksimenka, Katja and Wanjohi, John M. and Heydenreich, Matthias and Brun, Reto and M{\"u}ller, Werner E. G. and Peter, Martin and Midiwo, Jacob O. and Yenesew, Abiy}, title = {Joziknipholones A and B : the First Dimeric Phenylanthraquinones, from the Roots of Bulbine frutescens}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42638}, year = {2008}, abstract = {From the roots of the African plant Bulbine frutescens (Asphodelaceae), two unprecedented novel dimeric phenylanthraquinones, named joziknipholones A and B, possessing axial and centrochirality, were isolated, together with six known compounds. Structural elucidation of the new metabolites was achieved by spectroscopic and chiroptical methods, by reductive cleavage of the central bond between the monomeric phenylanthraquinone and -anthrone portions with sodium dithionite, and by quantum chemical CD calculations. Based on the recently revised absolute axial configuration of the parent phenylanthraquinones, knipholone and knipholone anthrone, the new dimers were attributed to possess the P-configuration (i.e., with the acetyl portions below the anthraquinone plane) at both axes in the case of joziknipholone A, whereas in joziknipholone B, the knipholone part was found to be M-configured. Joziknipholones A and B are active against the chloroquine resistant strain K1 of the malaria pathogen, Plasmodium falciparum, and show moderate activity against murine leukemic lymphoma L5178y cells.}, language = {en} } @article{vonLoeffelholzLieskeNeuschaeferRubeetal.2017, author = {von Loeffelholz, Christian and Lieske, Stefanie and Neuschaefer-Rube, Frank and Willmes, Diana M. and Raschzok, Nathanael and Sauer, Igor M. and K{\"o}nig, J{\"o}rg and Fromm, Martin F. and Horn, Paul and Chatzigeorgiou, Antonios and Pathe-Neuschaefer-Rube, Andrea and Jordan, Jens and Pfeiffer, Andreas F. H. and Mingrone, Geltrude and Bornstein, Stefan R. and Stroehle, Peter and Harms, Christoph and Wunderlich, F. Thomas and Helfand, Stephen L. and Bernier, Michel and de Cabo, Rafael and Shulman, Gerald I. and Chavakis, Triantafyllos and P{\"u}schel, Gerhard Paul and Birkenfeld, Andreas L.}, title = {The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism}, series = {Hepatology}, volume = {66}, journal = {Hepatology}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0270-9139}, doi = {10.1002/hep.29089}, pages = {616 -- 630}, year = {2017}, abstract = {Reduced expression of the Indy ("I am Not Dead, Yet") gene in lower organisms promotes longevity in a manner akin to caloric restriction. Deletion of the mammalian homolog of Indy (mIndy, Slc13a5) encoding for a plasma membrane-associated citrate transporter expressed highly in the liver, protects mice from high-fat diet-induced and aging-induced obesity and hepatic fat accumulation through a mechanism resembling caloric restriction. We studied a possible role of mIndy in human hepatic fat metabolism. In obese, insulin-resistant patients with nonalcoholic fatty liver disease, hepatic mIndy expression was increased and mIndy expression was also independently associated with hepatic steatosis. In nonhuman primates, a 2-year high-fat, high-sucrose diet increased hepatic mIndy expression. Liver microarray analysis showed that high mIndy expression was associated with pathways involved in hepatic lipid metabolism and immunological processes. Interleukin-6 (IL-6) was identified as a regulator of mIndy by binding to its cognate receptor. Studies in human primary hepatocytes confirmed that IL-6 markedly induced mIndy transcription through the IL-6 receptor and activation of the transcription factor signal transducer and activator of transcription 3, and a putative start site of the human mIndy promoter was determined. Activation of the IL-6-signal transducer and activator of transcription 3 pathway stimulated mIndy expression, enhanced cytoplasmic citrate influx, and augmented hepatic lipogenesis in vivo. In contrast, deletion of mIndy completely prevented the stimulating effect of IL-6 on citrate uptake and reduced hepatic lipogenesis. These data show that mIndy is increased in liver of obese humans and nonhuman primates with NALFD. Moreover, our data identify mIndy as a target gene of IL-6 and determine novel functions of IL-6 through mINDY. Conclusion: Targeting human mINDY may have therapeutic potential in obese patients with nonalcoholic fatty liver disease. German Clinical Trials Register: DRKS00005450.}, language = {en} } @article{KoltaiLiePlonka2019, author = {Koltai, Peter and Lie, Han Cheng and Plonka, Martin}, title = {Frechet differentiable drift dependence of Perron-Frobenius and Koopman operators for non-deterministic dynamics}, series = {Nonlinearity}, volume = {32}, journal = {Nonlinearity}, number = {11}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0951-7715}, doi = {10.1088/1361-6544/ab1f2a}, pages = {4232 -- 4257}, year = {2019}, abstract = {We prove the Fr{\´e}chet differentiability with respect to the drift of Perron-Frobenius and Koopman operators associated to time-inhomogeneous ordinary stochastic differential equations. This result relies on a similar differentiability result for pathwise expectations of path functionals of the solution of the stochastic differential equation, which we establish using Girsanov's formula. We demonstrate the significance of our result in the context of dynamical systems and operator theory, by proving continuously differentiable drift dependence of the simple eigen- and singular values and the corresponding eigen- and singular functions of the stochastic Perron-Frobenius and Koopman operators.}, language = {en} } @article{KongDeuberKittilaeetal.2018, author = {Kong, Xiang-Zhao and Deuber, Claudia A. and Kittil{\"a}, Anniina and Somogyv{\´a}ri, M{\´a}rk and Mikutis, Gediminas and Bayer, Peter and Stark, Wendelin J. and Saar, Martin O.}, title = {Tomographic Reservoir Imaging with DNA-Labeled Silica Nanotracers: The First Field Validation}, series = {Environmental science \& technology}, volume = {52}, journal = {Environmental science \& technology}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {0013-936X}, doi = {10.1021/acs.est.8b04367}, pages = {13681 -- 13689}, year = {2018}, abstract = {This study presents the first field validation of using DNA-labeled silica nanoparticles as tracers to image subsurface reservoirs by travel time based tomography. During a field campaign in Switzerland, we performed short-pulse tracer tests under a forced hydraulic head gradient to conduct a multisource-multireceiver tracer test and tomographic inversion, determining the two-dimensional hydraulic conductivity field between two vertical wells. Together with three traditional solute dye tracers, we injected spherical silica nanotracers, encoded with synthetic DNA molecules, which are protected by a silica layer against damage due to chemicals, microorganisms, and enzymes. Temporal moment analyses of the recorded tracer concentration breakthrough curves (BTCs) indicate higher mass recovery, less mean residence time, and smaller dispersion of the DNA-labeled nanotracers, compared to solute dye tracers. Importantly, travel time based tomography, using nanotracer BTCs, yields a satisfactory hydraulic conductivity tomogram, validated by the dye tracer results and previous field investigations. These advantages of DNA-labeled nanotracers, in comparison to traditional solute dye tracers, make them well-suited for tomographic reservoir characterizations in fields such as hydrogeology, petroleum engineering, and geothermal energy, particularly with respect to resolving preferential flow paths or the heterogeneity of contact surfaces or by enabling source zone characterizations of dense nonaqueous phase liquids.}, language = {en} } @article{SchallGossnerHeinrichsetal.2017, author = {Schall, Peter and Gossner, Martin M. and Heinrichs, Steffi and Fischer, Markus and Boch, Steffen and Prati, Daniel and Jung, Kirsten and Baumgartner, Vanessa and Blaser, Stefan and B{\"o}hm, Stefan and Buscot, Francois and Daniel, Rolf and Goldmann, Kezia and Kaiser, Kristin and Kahl, Tiemo and Lange, Markus and M{\"u}ller, J{\"o}rg Hans and Overmann, J{\"o}rg and Renner, Swen C. and Schulze, Ernst-Detlef and Sikorski, Johannes and Tschapka, Marco and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Wemheuer, Bernd and Wubet, Tesfaye and Ammer, Christian}, title = {The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {55}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12950}, pages = {267 -- 278}, year = {2017}, abstract = {1. For managed temperate forests, conservationists and policymakers favour fine-grained uneven-aged (UEA) management over more traditional coarse-grained even-aged (EA) management, based on the assumption that within-stand habitat heterogeneity enhances biodiversity. There is, however, little empirical evidence to support this assumption. We investigated for the first time how differently grained forest management systems affect the biodiversity of multiple above- and below-ground taxa across spatial scales. 2. We sampled 15 taxa of animals, plants, fungi and bacteria within the largest contiguous beech forest landscape of Germany and classified them into functional groups. Selected forest stands have been managed for more than a century at different spatial grains. The EA (coarse-grained management) and UEA (fine-grained) forests are comparable in spatial arrangement, climate and soil conditions. These were compared to forests of a nearby national park that have been unmanaged for at least 20years. We used diversity accumulation curves to compare -diversity for Hill numbers D-0 (species richness), D-1 (Shannon diversity) and D-2 (Simpson diversity) between the management systems. Beta diversity was quantified as multiple-site dissimilarity. 3. Gamma diversity was higher in EA than in UEA forests for at least one of the three Hill numbers for six taxa (up to 77\%), while eight showed no difference. Only bacteria showed the opposite pattern. Higher -diversity in EA forests was also found for forest specialists and saproxylic beetles. 4. Between-stand -diversity was higher in EA than in UEA forests for one-third (all species) and half (forest specialists) of all taxa, driven by environmental heterogeneity between age-classes, while -diversity showed no directional response across taxa or for forest specialists. 5. Synthesis and applications. Comparing EA and uneven-aged forest management in Central European beech forests, our results show that a mosaic of different age-classes is more important for regional biodiversity than high within-stand heterogeneity. We suggest reconsidering the current trend of replacing even-aged management in temperate forests. Instead, the variability of stages and stand structures should be increased to promote landscape-scale biodiversity.}, language = {en} } @article{KoloraWeigertSaffarietal.2018, author = {Kolora, Sree Rohit Raj and Weigert, Anne and Saffari, Amin and Kehr, Stephanie and Walter Costa, Maria Beatriz and Spr{\"o}er, Cathrin and Indrischek, Henrike and Chintalapati, Manjusha and Lohse, Konrad and Doose, Gero and Overmann, J{\"o}rg and Bunk, Boyke and Bleidorn, Christoph and Grimm-Seyfarth, Annegret and Henle, Klaus and Nowick, Katja and Faria, Rui and Stadler, Peter F. and Schlegel, Martin}, title = {Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation}, series = {GigaScience}, volume = {8}, journal = {GigaScience}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2047-217X}, doi = {10.1093/gigascience/giy160}, pages = {15}, year = {2018}, abstract = {Background Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. Findings Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. Conclusion The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.}, language = {en} } @article{HeinrichsAmmerMundetal.2019, author = {Heinrichs, Steffi and Ammer, Christian and Mund, Martina and Boch, Steffen and Budde, Sabine and Fischer, Markus and Mueller, Joerg and Schoening, Ingo and Schulze, Ernst-Detlef and Schmidt, Wolfgang and Weckesser, Martin and Schall, Peter}, title = {Landscape-Scale Mixtures of Tree Species are More Effective than Stand-Scale Mixtures for Biodiversity of Vascular Plants, Bryophytes and Lichens}, series = {Forests}, volume = {10}, journal = {Forests}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1999-4907}, doi = {10.3390/f10010073}, pages = {34}, year = {2019}, abstract = {Tree species diversity can positively affect the multifunctionality of forests. This is why conifer monocultures of Scots pine and Norway spruce, widely promoted in Central Europe since the 18th and 19th century, are currently converted into mixed stands with naturally dominant European beech. Biodiversity is expected to benefit from these mixtures compared to pure conifer stands due to increased abiotic and biotic resource heterogeneity. Evidence for this assumption is, however, largely lacking. Here, we investigated the diversity of vascular plants, bryophytes and lichens at the plot (alpha diversity) and at the landscape (gamma diversity) level in pure and mixed stands of European beech and conifer species (Scots pine, Norway spruce, Douglas fir) in four regions in Germany. We aimed to identify compositions of pure and mixed stands in a hypothetical forest landscape that can optimize gamma diversity of vascular plants, bryophytes and lichens within regions. Results show that gamma diversity of the investigated groups is highest when a landscape comprises different pure stands rather than tree species mixtures at the stand scale. Species mainly associated with conifers rely on light regimes that are only provided in pure conifer forests, whereas mixtures of beech and conifers are more similar to beech stands. Combining pure beech and pure conifer stands at the landscape scale can increase landscape level biodiversity and conserve species assemblages of both stand types, while landscapes solely composed of stand scale tree species mixtures could lead to a biodiversity reduction of a combination of investigated groups of 7 up to 20\%.}, language = {en} } @article{ZablBoucheSchroetteretal.2019, author = {Zabl, Johannes and Bouche, Nicolas F. and Schroetter, Ilane and Wendt, Martin and Finley, Hayley and Schaye, Joop and Conseil, Simon and Contini, Thierry and Marino, Raffaella Anna and Mitchell, Peter and Muzahid, Sowgat and Pezzulli, Gabriele and Wisotzki, Lutz}, title = {MusE GAs FLOw and Wind (MEGAFLOW)}, series = {Monthly notices of the Royal Astronomical Society}, volume = {485}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz392}, pages = {1961 -- 1980}, year = {2019}, abstract = {We use the MusE GAs FLOw and Wind (MEGAFLOW) survey to study the kinematics of extended disc-like structures of cold gas around z approximate to 1 star-forming galaxies. The combination of VLT/MUSE and VLT/UVES observations allows us to connect the kinematics of the gas measured through MgII quasar absorption spectroscopy to the kinematics and orientation of the associated galaxies constrained through integral field spectroscopy. Confirming previous results, we find that the galaxy-absorber pairs of the MEGAFLOW survey follow a strong bimodal distribution, consistent with a picture of MgII absorption being predominantly present in outflow cones and extended disc-like structures. This allows us to select a bona-fide sample of galaxy-absorber pairs probing these discs for impact paramometers of 10-70 kpc. We test the hypothesis that the disc-like gas is co-rotating with the galaxy discs, and find that for seven out of nine pairs the absorption velocity shares the sign of the disc velocity, disfavouring random orbits. We further show that the data are roughly consistent with inflow velocities and angular momenta predicted by simulations, and that the corresponding mass accretion rates are sufficient to balance the star formation rates.}, language = {en} } @article{SchmidtMartinLopezPhillipsetal.2018, author = {Schmidt, Katja and Martin-Lopez, Berta and Phillips, Peter M. and Julius, Eike and Makan, Neville and Walz, Ariane}, title = {Key landscape features in the provision of ecosystem services}, series = {Land use policy}, volume = {82}, journal = {Land use policy}, publisher = {Elsevier}, address = {Oxford}, issn = {0264-8377}, doi = {10.1016/j.landusepol.2018.12.022}, pages = {353 -- 366}, year = {2018}, abstract = {Whereas ecosystem service research is increasingly being promoted in science and policy, the utilisation of ecosystem services knowledge remains largely underexplored for regional ecosystem management. To overcome the mere generation of knowledge and contribute to decision-making, scientists are facing the challenge of articulating specific implications of the ecosystem service approach for practical land use management. In this contribution, we compare the results of participatory mapping of ecosystem services with the existing management plan for the Pentland Hills Regional Park (Scotland, UK) to inform its future management plan. By conducting participatory mapping in a workshop with key stakeholders (n = 20), we identify hotspots of ecosystem services and the landscape features underpinning such hotspots. We then analyse to what extent these landscape features are the focus of the current management plan. We found a clear mismatch between the key landscape features underpinning the provision of ecosystem services and the management strategy suggested. Our findings allow for a better understanding of the required focus of future land use management to account for ecosystem services.}, language = {en} } @article{WilkenBaurSommeretal.2018, author = {Wilken, Florian and Baur, Martin and Sommer, Michael and Deumlich, Detlef and Bens, Oliver and Fiener, Peter}, title = {Uncertainties in rainfall kinetic energy-intensity relations for soil erosion modelling}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {171}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2018.07.002}, pages = {234 -- 244}, year = {2018}, abstract = {For bare soil conditions, the most important process driving and initiating splash and interrill erosion is the detachment of soil particles via raindrop impact. The kinetic energy of a rainfall event is controlled by the drop size and fall velocity distribution, which is often directly or indirectly implemented in erosion models. Therefore, numerous theoretical functions have been developed for the estimation of rainfall kinetic energy from available rainfall intensity measurements. The aim of this study is to assess differences inherent in a wide number of kinetic energy-rainfall intensity (KE-I) relations and their role in soil erosion modelling. Therefore, 32 KE-I relations are compared against measured rainfall energies based on optical distrometer measurements carried out at five stations of two substantially different rainfall regimes. These allow for continuous high-resolution (1-min) direct measurements of rainfall kinetic energies from a detailed spectrum of measured drop sizes and corresponding fall velocities. To quantify the effect of different KE-I relations on sediment delivery, we apply the erosion model WATEM/SEDEM in an experimental setup to four catchments of NE-Germany. The distrometer data shows substantial differences between measured and theoretical models of drop size and fall velocity distributions. For low intensities the number of small drops is overestimated by the Marshall and Palmer (1948; MP) drop size distribution, while for high intensities the proportion of large drops is overestimated by the MP distribution. The distrometer measurements show a considerable proportion of large drops falling at slower velocities than predicted by the Gunn and Kinzer (1949) terminal velocity model. For almost all rainfall events at all stations, the KE-I relations predicted higher cumulative kinetic energy sums compared to the direct measurements of the optical distrometers. The different KE-I relations show individual characteristics over the course of rainfall intensity levels. Our results indicate a high sensitivity (up to a range from 10 to 27 t ha(-1)) of the simulated sediment delivery related to different KE-I relations. Hence, the uncertainty associated with KE-I relations for soil erosion modelling is of critical importance.}, language = {en} } @article{FroylandKoltaiStahn2020, author = {Froyland, Gary and Koltai, Peter and Stahn, Martin}, title = {Computation and optimal perturbation of finite-time coherent sets for aperiodic flows without trajectory integration}, series = {SIAM journal on applied dynamical systems}, volume = {19}, journal = {SIAM journal on applied dynamical systems}, number = {3}, publisher = {Society for Industrial and Applied Mathematics}, address = {Philadelphia}, issn = {1536-0040}, doi = {10.1137/19M1261791}, pages = {1659 -- 1700}, year = {2020}, abstract = {Understanding the macroscopic behavior of dynamical systems is an important tool to unravel transport mechanisms in complex flows. A decomposition of the state space into coherent sets is a popular way to reveal this essential macroscopic evolution. To compute coherent sets from an aperiodic time-dependent dynamical system we consider the relevant transfer operators and their infinitesimal generators on an augmented space-time manifold. This space-time generator approach avoids trajectory integration and creates a convenient linearization of the aperiodic evolution. This linearization can be further exploited to create a simple and effective spectral optimization methodology for diminishing or enhancing coherence. We obtain explicit solutions for these optimization problems using Lagrange multipliers and illustrate this technique by increasing and decreasing mixing of spatial regions through small velocity field perturbations.}, language = {en} } @misc{GrottPeterLinkeretal.2003, author = {Grott, Saskia and Peter, Martin G. and Linker, Torsten and Sefkow, Michael and Kroll, J{\"u}rgen and Koetz, Joachim and Laschewsky, Andr{\´e} and Lokatis, Siegfried and Rheinberg, Falko and Manig, Yvette}, title = {Portal = Chemie: Werkstoffe, Wirkstoffe, Lebensvorg{\"a}nge}, number = {01-02/2003}, organization = {Universit{\"a}t Potsdam, Referat f{\"u}r Presse- und {\"O}ffentlichkeitsarbeit}, issn = {1618-6893}, doi = {10.25932/publishup-43971}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439713}, pages = {46}, year = {2003}, abstract = {Aus dem Inhalt: - Chemie: Werkstoffe, Wirkstoffe, Lebensvorg{\"a}nge - Institut f{\"u}r Kirchenrecht gegr{\"u}ndet - Computerlinguisten erstellen digitales W{\"o}rterbuch - Vom Spaß am Graffiti-Sprayen}, language = {de} } @article{BringmannMutanyattaComarMaksimenkaetal.2008, author = {Bringmann, Gerhard and Mutanyatta-Comar, Joan and Maksimenka, Katja and Wanjohi, John M. and Heydenreich, Matthias and Brun, Reto and M{\"u}ller, Werner E. G. and Peter, Martin G. and Midiwo, Jacob O. and Yenesew, Abiy}, title = {Joziknipholones A and B : the first dimeric phenylanthraquinones, from the roots of Bulbine frutescens}, issn = {0947-6539}, year = {2008}, abstract = {From the roots of the African plant Bulbine frutescens (Asphodelaceae), two unprecedented novel dimeric phenylanthraquinones, named joziknipholones A and B, possessing axial and centrochirality, were isolated, together with six known compounds. Structural elucidation of the new metabolites was achieved by spectroscopic and chiroptical methods, by reductive cleavage of the central bond between the monomeric phenylanthraquinone and -anthrone portions with sodium dithionite, and by quantum chemical CD calculations. Based on the recently revised absolute axial configuration of the parent phenylanthraquinones, knipholone and knipholone anthrone, the new dimers were attributed to possess the P- configuration (i.e., with the acetyl portions below the anthraquinone plane) at both axes in the case of joziknipholone A, whereas in joziknipholone B, the knipholone part was found to be M-configured. Joziknipholones A and B are active against the chloroquine resistant strain K1 of the malaria pathogen, Plasmodium falciparum, and show moderate activity against murine leukemic lymphoma L5178y cells.}, language = {en} } @misc{Peter1989, author = {Peter, Martin G.}, title = {Chemische Modifikation von Biopolymeren durch Chinone und Chinonmethide}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16802}, year = {1989}, abstract = {Chinone und Vorstufen, die oxidativ in Chinone und/oder Chinonmethide umgewandelt werden k{\"o}nnen, sind in der Natur weit verbreitet. Als sekund{\"a}re Naturstoffe wirken sie h{\"a}ufig antibiotisch, cytotoxisch, aber auch pathogen, und eine Reihe von Pflanzen und Tieren benutzt chinoide Substanzen als Abwehrstoffe, oft mit spektakul{\"a}rem Erfolg. Auf makromolekularer Ebene spielen Chinonmethide im Pflanzenreich eine Schl{\"u}sselrolle bei der Biosynthese von Lignin, w{\"a}hrend die Bildung von Melanoproteinen ein Beispiel f{\"u}r Reaktionen von o-Chinonen im Tierreich ist. Bei den Insekten dienen Chinone und Chinonmethide zur Bildung des lebensnotwendigen Exoskeletts. Die Reaktivit{\"a}t von Chinonen in biologischen Systemen hat auch f{\"u}r den Menschen unmittelbare Bedeutung in pharmazeutischer, toxikologischer und technologischer Hinsicht. Den Beispielen in diesem Aufsatz liegt ein gemeinsames Prinzip zugrunde, n{\"a}mlich die chemische Modifikation von Biopolymeren durch Chinone und Chinonmethide. Wie sich besonders bei einer detaillierteren Betrachtung der Reaktionen zeigt, die zur Sklerotisierung der Insektencuticula f{\"u}hren, sind in den letzten Jahren wichtige neue Erkenntnisse hinzugekommen, die vor allem durch die modernen Methoden der Stofftrennung und der Festk{\"o}rper-NMR-Spektroskopie erm{\"o}glicht worden sind.}, language = {de} } @misc{Peter1980, author = {Peter, Martin G.}, title = {Products of in vitro oxidation of N-acetyldopamine as possible components in the sclerotization of insect cuticle}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16759}, year = {1980}, abstract = {[1-14C]-N-Acetyldopamine (NADA) was oxidized in the presence of methyl [3-3H]-β-alanate with mushroom tyrosinase. The complex mixture of reaction products was partly resolved by chromatographic procedures and analyzed by spectroscopic methods. Methyl-β-alanate is incorporated to only a small extent into oxidation products of NADA which inter alia are presumed to be oligomeric hydroxyquinones. After oxidation of [1-14C, 2-3H]-NADA with preparations from tanning Manduca sexta pupal cuticle, N-acetylnoradrenalin was identified as one of the products. Binding of radioactivity to melanin-like material was also observed. These results suggest that oxidation products different from those formulated usually for the crosslinkages between protein amino groups and N-acetyldopaquinone are deposited in darkly brown coloured insect cuticles during sclerotization.}, language = {en} } @misc{PueschelHespelingOppermannetal.1993, author = {P{\"u}schel, Gerhard Paul and Hespeling, Ursula and Oppermann, Martin and Dieter, Peter}, title = {Increase in prostanoid formation in rat liver macrophages (Kupffer cells) by human anaphylatoxin C3a}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16716}, year = {1993}, abstract = {Human anaphylatoxin C3a increases glycogenolysis in perfused rat liver. This action is inhibited by prostanoid synthesis inhibitors and prostanoid antagonists. Because prostanoids but not anaphylatoxin C3a can increase glycogenolysis in hepatocytes, it has been proposed that prostanoid formation in nonparenchymal cells represents an important step in the C3a-dependent increase in hepatic glycogenolysis. This study shows that (a) human anaphylatoxin C3a (0.1 to 10 mug/ml) dose-dependently increased prostaglandin D2, thromboxane B, and prostaglandin F2alpha formation in rat liver macrophages (Kupffer cells); (b) the C3a-mediated increase in prostanoid formation was maximal after 2 min and showed tachyphylaxis; and (c) the C3a-elicited prostanoid formation could be inhibited specifically by preincubation of C3a with carboxypeptidase B to remove the essential C-terminal arginine or by preincubation of C3a with Fab fragments of a neutralizing monoclonal antibody. These data support the hypothesis that the C3a-dependent activation of hepatic glycogenolysis is mediated by way of a C3a-induced prostanoid production in Kupffer cells.}, language = {en} }