@article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} } @article{YenesewMushibeIndulietal.2005, author = {Yenesew, Abiy and Mushibe, E. K. and Induli, M. and Derese, Solomon and Midiwo, Jacob O. and Kabaru, Jacques M. and Heydenreich, Matthias and Koch, Andreas and Peter, Martin G.}, title = {7a-O-methyldeguelol, a modified rotenoid with an open ring-C, from the roots of Derris trifoloata}, issn = {0031-9422}, year = {2005}, abstract = {From the acetone extract of the roots of Derris trifoliata an isollavonoid derivative, named 7a-O- methyldeguelol, a modified rotenoid with an open ring-C, representing a new sub-class of isollavonoids (the sub-class is here named as rotenoloid), was isolated and characterised. In addition, the known rotenoids, rotenone, deguelin and alpha-toxicarol, were identified. The structures were determined on the basis of spectroscopic evidence. Rotenone and deguelin were identified as the larvicidal principles of the acetone extract of the roots of Derris trifoliata. (c) 2005 Elsevier Ltd. All rights reserved}, language = {en} } @article{AlbrechtKochLodeetal.2001, author = {Albrecht, Tanja and Koch, Anke and Lode, Anja and Greve, Burkhard and Schneider-Mergener, Jens and Steup, Martin}, title = {Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants : expression analysis and immunochemical characterization}, year = {2001}, language = {en} } @article{AlbrechtHaebelKochetal.2004, author = {Albrecht, Tanja and Haebel, Sophie and Koch, Anke and Krause, Ulrike and Eckermann, Nora and Steup, Martin}, title = {Yeast glycogenin (Glg2p) produced in Escherichia coli is simultaneously glucosylated at two vicinal tyrosin residues but results in a reduced bacterial glycogen accumulation}, year = {2004}, abstract = {Saccharomyces cerevisiae possesses two glycogenin isoforms (designated as Glg1p and Glg2p) that both contain a conserved tyrosine residue, Tyr232. However, Glg2p possesses an additional tyrosine residue, Tyr230 and therefore two potential autoglucosylation sites. Glucosylation of Glg2p was studied using both matrix-assisted laser desorption ionization and electrospray quadrupole time of flight mass spectrometry. Glg2p, carrying a C-terminal (His(6)) tag, was produced in Escherichia coli and purified. By tryptic digestion and reversed phase chromatography a peptide (residues 219-246 of the complete Glg2p sequence) was isolated that contained 4-25 glucosyl residues. Following incubation of Glg2p with UDPglucose, more than 36 glucosyl residues were covalently bound to this peptide. Using a combination of cyanogen bromide cleavage of the protein backbone, enzymatic hydrolysis of glycosidic bonds and reversed phase chromatography, mono- and diglucosylated peptides having the sequence PNYGYQSSPAM were generated. MS/MS spectra revealed that glucosyl residues were attached to both Tyr232 and Tyr230 within the same peptide. The formation of the highly glucosylated eukaryotic Glg2p did not favour the bacterial glycogen accumulation. Under various experimental conditions Glg2p-producing cells accumulated approximately 30\% less glycogen than a control transformed with a Glg2p lacking plasmid. The size distribution of the glycogen and extractable activities of several glycogen-related enzymes were essentially unchanged. As revealed by high performance anion exchange chromatography, the intracellular maltooligosaccharide pattern of the bacterial cells expressing the functional eukaryotic transgene was significantly altered. Thus, the eukaryotic glycogenin appears to be incompatible with the bacterial initiation of glycogen biosynthesis}, language = {en} } @article{CastellaniSalzmannBugnonetal.2009, author = {Castellani, Mauro and Salzmann, Ingo and Bugnon, Philippe and Yu, Shuwen and Oehzelt, Martin and Koch, Norbert}, title = {Structural and electronic implications for carrier injection into organic semiconductors}, issn = {0947-8396}, doi = {10.1007/s00339-009-5336-6}, year = {2009}, abstract = {We report on the structural and electronic interface formation between ITO (indium-tin-oxide) and prototypical organic small molecular semiconductors, i.e., CuPc (copper phthalocyanine) and alpha-NPD (N,N'-di(naphtalen-1-yl)- N,N'-diphenyl-benzidine). In particular, the effects of in situ oxygen plasma pretreatment of the ITO surface on interface properties are examined in detail: Organic layer-thickness dependent Kelvin probe measurements revealed a good alignment of the ITO work function and the highest occupied electronic level of the organic material in all samples. In contrast, the electrical properties of hole-only and bipolar organic diodes depend strongly on the treatment of ITO prior to organic deposition. This dependence is more pronounced for diodes made of polycrystalline CuPc than for those of amorphous alpha-NPD layers. X-ray diffraction and atomic force microscopic (AFM) investigations of CuPc nucleation and growth evidenced a more pronounced texture of the polycrystalline film structure on the ITO substrate that was oxygen plasma treated prior to organic layer deposition. These findings suggest that the anisotropic electrical properties of CuPc crystallites, and their orientation with respect to the substrate, strongly affect the charge carrier injection and transport properties at the anode interface.}, language = {en} } @article{KochSchaldachKoechy2008, author = {Koch, Jennifer and Schaldach, R{\"u}diger and Koechy, Martin}, title = {Modeling the impacts of grazing land management on land-use change for the Jordan River region}, doi = {10.1016/j.gloplacha.2008.09.005}, year = {2008}, abstract = {In this article, we describe a simulation method for investigating the impacts of different grazing land management strategies on the productivity of (semi-)natural vegetation and the resulting feedback on land-use change. In a first application, we analyze the effects of sustainable and intensive grazing land management in the Jordan River region. For this purpose, we adapt and use the regional version of the spatially explicit modeling framework LandSHIFT. Our simulation experiments indicate that the modeled feedback mechanism has a strong effect on the spatial extent of grazing land. Consequently, the results of our study underline that the inclusion of such feedback mechanisms in land- use models can help to represent and analyze the complex interactions between humans and the environment in a more differentiated and realistic way, but they also identify the demand for more detailed empirical data on grazing land degradation in order to further improve the explanatory power of the model.}, language = {en} } @article{SchaldachWimmerKochetal.2013, author = {Schaldach, R{\"u}diger and Wimmer, Florian and Koch, Jennifer and Volland, Jan and Geissler, Katja and K{\"o}chy, Martin}, title = {Model-based analysis of the environmental impacts of grazing management on Eastern Mediterranean ecosystems in Jordan}, series = {Journal of environmental management}, volume = {127}, journal = {Journal of environmental management}, number = {9}, publisher = {Elsevier}, address = {London}, issn = {0301-4797}, doi = {10.1016/j.jenvman.2012.11.024}, pages = {S84 -- S95}, year = {2013}, abstract = {Eastern Mediterranean ecosystems are prone to desertification when under grazing pressure. Therefore, management of grazing intensity plays a crucial role to avoid or to diminish land degradation and to sustain both livelihoods and ecosystem functioning. The dynamic land-use model LandSHIFT was applied to a case study on the country level for Jordan. The impacts of different stocking densities on the environment were assessed through a set of simulation experiments for various combinations of climate input and assumptions about the development of livestock numbers. Indicators used for the analysis include a set of landscape metrics to account for habitat fragmentation and the "Human Appropriation of Net Primary Production" (HANPP), i.e., the difference between the amount of net primary production (NPP) that would be available in a natural ecosystem and the amount of NPP that remains under human management. Additionally, the potential of the economic valuation of ecosystem services, including landscape and grazing services, as an analysis concept was explored. We found that lower management intensities had a positive effect on HANPP but at the same time resulted in a strong increase of grazing area. This effect was even more pronounced under climate change due to a predominantly negative effect on the biomass productivity of grazing land. Also Landscape metrics tend to indicate decreasing habitat fragmentation as a consequence of lower grazing pressure. The valuation of ecosystem services revealed that low grazing intensity can lead to a comparatively higher economic value on the country level average. The results from our study underline the importance of considering grazing management as an important factor to manage dry-land ecosystems in a sustainable manner.}, language = {en} } @unpublished{daConceicaoHeldtKochLiese2014, author = {da Conceicao-Heldt, Eugenia and Koch, Martin and Liese, Andrea Margit}, title = {International organizations autonomy, politicization, interorganizational relations and change foreword}, series = {Politische Vierteljahresschrift : Zeitschrift der Deutschen Vereinigung f{\"u}r Politische Wissenschaft}, journal = {Politische Vierteljahresschrift : Zeitschrift der Deutschen Vereinigung f{\"u}r Politische Wissenschaft}, publisher = {Nomos}, address = {Hannover}, issn = {0032-3470}, pages = {3 -- 3}, year = {2014}, language = {de} } @unpublished{daConceicaoHeldtKochLiese2014, author = {da Conceicao-Heldt, Eugenia and Koch, Martin and Liese, Andrea Margit}, title = {International organisations as research subject. Or: "About Blind and the Shape of the Elephant"}, series = {Politische Vierteljahresschrift : Zeitschrift der Deutschen Vereinigung f{\"u}r Politische Wissenschaft}, journal = {Politische Vierteljahresschrift : Zeitschrift der Deutschen Vereinigung f{\"u}r Politische Wissenschaft}, publisher = {Nomos}, address = {Hannover}, issn = {0032-3470}, pages = {4 -- 27}, year = {2014}, language = {de} } @article{daConceicaoHeldtKochLiese2014, author = {da Conceicao-Heldt, Eugenia and Koch, Martin and Liese, Andrea Margit}, title = {International organizations in a complex world- borders and Aadded value of a pluralistic research}, series = {Politische Vierteljahresschrift : Zeitschrift der Deutschen Vereinigung f{\"u}r Politische Wissenschaft}, journal = {Politische Vierteljahresschrift : Zeitschrift der Deutschen Vereinigung f{\"u}r Politische Wissenschaft}, publisher = {Nomos}, address = {Hannover}, issn = {0032-3470}, pages = {478 -- 493}, year = {2014}, language = {de} } @article{SalzmannHeimelDuhmetal.2012, author = {Salzmann, Ingo and Heimel, Georg and Duhm, Steffen and Oehzelt, Martin and Pingel, Patrick and George, Benjamin M. and Schnegg, Alexander and Lips, Klaus and Blum, Ralf-Peter and Vollmer, Antje and Koch, Norbert}, title = {Intermolecular hybridization governs molecular electrical doping}, series = {Physical review letters}, volume = {108}, journal = {Physical review letters}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.108.035502}, pages = {5}, year = {2012}, abstract = {Current models for molecular electrical doping of organic semiconductors are found to be at odds with other well-established concepts in that field, like polaron formation. Addressing these inconsistencies for prototypical systems, we present experimental and theoretical evidence for intermolecular hybridization of organic semiconductor and dopant frontier molecular orbitals. Common doping-related observations are attributed to this phenomenon, and controlling the degree of hybridization emerges as a strategy for overcoming the present limitations in the yield of doping-induced charge carriers.}, language = {en} } @article{SchmidtZiemannPentzienetal.2016, author = {Schmidt, Birgit Angelika and Ziemann, Martin Andreas and Pentzien, Simone and Gabsch, Toralf and Koch, Werner and Kr{\"u}ger, J{\"o}rg}, title = {Technical analysis of a Central Asian wall painting detached from a Buddhist cave temple on the northern Silk Road}, series = {Studies in Conservation}, volume = {61}, journal = {Studies in Conservation}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0039-3630}, doi = {10.1179/2047058414Y.0000000152}, pages = {113 -- 122}, year = {2016}, abstract = {A great number of Central Asian wall paintings, archeological materials, architectural fragments, and textiles, as well as painting fragments on silk and paper, make up the so called Turfan Collection at the Asian Art Museum in Berlin. The largest part of the collection comes from the Kucha region, a very important cultural center in the third to ninth centuries. Between 1902 and 1914, four German expeditions traveled along the northern Silk Road. During these expeditions, wall paintings were detached from their original settings in Buddhist cave complexes. This paper reports a technical study of a wall painting, existing in eight fragments, from the Buddhist cave no. 40 (Ritterhohle). Its original painted surface is soot blackened and largely illegible. Gruwedel, leader of the first and third expeditions, described the almost complete destruction of the rediscovered temple complex and evidence of fire damage. The aim of this case study is to identify the materials used for the wall paintings. Furthermore, soot deposits as well as materials from conservation interventions were of interest. Non-invasive analyses were preferred but a limited number of samples were taken to provide more precise information on the painting technique. By employing optical and scanning electron microscopy, energy dispersive X-ray spectroscopy, micro X-ray fluorescence spectroscopy, X-ray diffraction analysis, and Raman spectroscopy, a layer sequence of earthen render, a ground layer made of gypsum, and a paint layer containing a variety of inorganic pigments were identified.}, language = {en} } @book{AmendTrautBayerleDunckeretal.2018, author = {Amend-Traut, Anja and Bayerle, Katrin and Duncker, Arne Dirk and Dusil, Stephan and Forster, Wolfgang and Frassek, Ralf and Hermann, Hans-Georg and Koch, Elisabeth and Lettmaier, Saskia and L{\"o}hning, Martin and Ludyga, Hannes and Maetschke, Matthias and Mayenburg, David von and Meder, Stephan and Repgen, Tilman and Roth, Andreas and Saar, Stefan Christoph and Schlinker, Steffen and Schmoeckel, Matthias and Schumann, Eva and Thier, Andreas}, title = {Familienrecht \S\S 1297-1921}, series = {Historisch-kritischer Kommentar zum BGB ; 4}, journal = {Historisch-kritischer Kommentar zum BGB ; 4}, publisher = {Mohr Siebeck}, address = {T{\"u}bingen}, isbn = {978-3-16-156399-7}, pages = {XXXVIII,1622}, year = {2018}, language = {de} } @article{AceroAloisioAmansetal.2017, author = {Acero, F. and Aloisio, R. and Amans, J. and Amato, Elena and Antonelli, L. A. and Aramo, C. and Armstrong, T. and Arqueros, F. and Asano, Katsuaki and Ashley, M. and Backes, M. and Balazs, C. and Balzer, A. and Bamba, Aya and Barkov, Maxim and Barrio, J. A. and Benbow, Wystan and Bernloehr, K. and Beshley, V. and Bigongiari, C. and Biland, A. and Bilinsky, A. and Bissaldi, Elisabetta and Biteau, J. and Blanch, O. and Blasi, P. and Blazek, J. and Boisson, C. and Bonanno, G. and Bonardi, A. and Bonavolonta, C. and Bonnoli, G. and Braiding, C. and Brau-Nogue, S. and Bregeon, J. and Brown, A. M. and Bugaev, V. and Bulgarelli, A. and Bulik, T. and Burton, Michael and Burtovoi, A. and Busetto, G. and Bottcher, M. and Cameron, R. and Capalbi, M. and Caproni, Anderson and Caraveo, P. and Carosi, R. and Cascone, E. and Cerruti, M. and Chaty, Sylvain and Chen, A. and Chen, X. and Chernyakova, M. and Chikawa, M. and Chudoba, J. and Cohen-Tanugi, J. and Colafrancesco, S. and Conforti, V. and Contreras, J. L. and Costa, A. and Cotter, G. and Covino, Stefano and Covone, G. and Cumani, P. and Cusumano, G. and Daniel, M. and Dazzi, F. and De Angelis, A. and De Cesare, G. and De Franco, A. and De Frondat, F. and Dal Pino, E. M. de Gouveia and De Lisio, C. and Lopez, R. de los Reyes and De Lotto, B. and de Naurois, M. and De Palma, F. and Del Santo, M. and Delgado, C. and della Volpe, D. and Di Girolamo, T. and Di Giulio, C. and Di Pierro, F. and Di Venere, L. and Doro, M. and Dournaux, J. and Dumas, D. and Dwarkadas, Vikram V. and Diaz, C. and Ebr, J. and Egberts, Kathrin and Einecke, S. and Elsaesser, D. and Eschbach, S. and Falceta-Goncalves, D. and Fasola, G. and Fedorova, E. and Fernandez-Barral, A. and Ferrand, Gilles and Fesquet, M. and Fiandrini, E. and Fiasson, A. and Filipovic, Miroslav D. and Fioretti, V. and Font, L. and Fontaine, Gilles and Franco, F. J. and Freixas Coromina, L. and Fujita, Yutaka and Fukui, Y. and Funk, S. and Forster, A. and Gadola, A. and Lopez, R. Garcia and Garczarczyk, M. and Giglietto, N. and Giordano, F. and Giuliani, A. and Glicenstein, J. and Gnatyk, R. and Goldoni, P. and Grabarczyk, T. and Graciani, R. and Graham, J. and Grandi, P. and Granot, Jonathan and Green, A. J. and Griffiths, S. and Gunji, S. and Hakobyan, H. and Hara, S. and Hassan, T. and Hayashida, M. and Heller, M. and Helo, J. C. and Hinton, J. and Hnatyk, B. and Huet, J. and Huetten, M. and Humensky, T. B. and Hussein, M. and Horandel, J. and Ikeno, Y. and Inada, T. and Inome, Y. and Inoue, S. and Inoue, T. and Inoue, Y. and Ioka, K. and Iori, Maurizio and Jacquemier, J. and Janecek, P. and Jankowsky, D. and Jung, I. and Kaaret, P. and Katagiri, H. and Kimeswenger, S. and Kimura, Shigeo S. and Knodlseder, J. and Koch, B. and Kocot, J. and Kohri, K. and Komin, N. and Konno, Y. and Kosack, K. and Koyama, S. and Kraus, Michaela and Kubo, Hidetoshi and Mezek, G. Kukec and Kushida, J. and La Palombara, N. and Lalik, K. and Lamanna, G. and Landt, H. and Lapington, J. and Laporte, P. and Lee, S. and Lees, J. and Lefaucheur, J. and Lenain, J. -P. and Leto, Giuseppe and Lindfors, E. and Lohse, T. and Lombardi, S. and Longo, F. and Lopez, M. and Lucarelli, F. and Luque-Escamilla, Pedro Luis and Lopez-Coto, R. and Maccarone, M. C. and Maier, G. and Malaguti, G. and Mandat, D. and Maneva, G. and Mangano, S. and Marcowith, Alexandre and Marti, J. and Martinez, M. and Martinez, G. and Masuda, S. and Maurin, G. and Maxted, N. and Melioli, Claudio and Mineo, T. and Mirabal, N. and Mizuno, T. and Moderski, R. and Mohammed, M. and Montaruli, T. and Moralejo, A. and Mori, K. and Morlino, G. and Morselli, A. and Moulin, Emmanuel and Mukherjee, R. and Mundell, C. and Muraishi, H. and Murase, Kohta and Nagataki, Shigehiro and Nagayoshi, T. and Naito, T. and Nakajima, D. and Nakamori, T. and Nemmen, R. and Niemiec, Jacek and Nieto, D. and Nievas-Rosillo, M. and Nikolajuk, M. and Nishijima, K. and Noda, K. and Nogues, L. and Nosek, D. and Novosyadlyj, B. and Nozaki, S. and Ohira, Yutaka and Ohishi, M. and Ohm, S. and Okumura, A. and Ong, R. A. and Orito, R. and Orlati, A. and Ostrowski, M. and Oya, I. and Padovani, Marco and Palacio, J. and Palatka, M. and Paredes, Josep M. and Pavy, S. and Persic, M. and Petrucci, P. and Petruk, Oleh and Pisarski, A. and Pohl, Martin and Porcelli, A. and Prandini, E. and Prast, J. and Principe, G. and Prouza, M. and Pueschel, Elisa and Puelhofer, G. and Quirrenbach, A. and Rameez, M. and Reimer, O. and Renaud, M. and Ribo, M. and Rico, J. and Rizi, V. and Rodriguez, J. and Fernandez, G. Rodriguez and Rodriguez Vazquez, J. J. and Romano, Patrizia and Romeo, G. and Rosado, J. and Rousselle, J. and Rowell, G. and Rudak, B. and Sadeh, I. and Safi-Harb, S. and Saito, T. and Sakaki, N. and Sanchez, D. and Sangiorgi, P. and Sano, H. and Santander, M. and Sarkar, S. and Sawada, M. and Schioppa, E. J. and Schoorlemmer, H. and Schovanek, P. and Schussler, F. and Sergijenko, O. and Servillat, M. and Shalchi, A. and Shellard, R. C. and Siejkowski, H. and Sillanpaa, A. and Simone, D. and Sliusar, V. and Sol, H. and Stanic, S. and Starling, R. and Stawarz, L. and Stefanik, S. and Stephan, M. and Stolarczyk, T. and Szanecki, M. and Szepieniec, T. and Tagliaferri, G. and Tajima, H. and Takahashi, M. and Takeda, J. and Tanaka, M. and Tanaka, S. and Tejedor, L. A. and Telezhinsky, Igor O. and Temnikov, P. and Terada, Y. and Tescaro, D. and Teshima, M. and Testa, V. and Thoudam, S. and Tokanai, F. and Torres, D. F. and Torresi, E. and Tosti, G. and Townsley, C. and Travnicek, P. and Trichard, C. and Trifoglio, M. and Tsujimoto, S. and Vagelli, V. and Vallania, P. and Valore, L. and van Driel, W. and van Eldik, C. and Vandenbroucke, Justin and Vassiliev, V. and Vecchi, M. and Vercellone, Stefano and Vergani, S. and Vigorito, C. and Vorobiov, S. and Vrastil, M. and Vazquez Acosta, M. L. and Wagner, S. J. and Wagner, R. and Wakely, S. P. and Walter, R. and Ward, J. E. and Watson, J. J. and Weinstein, A. and White, M. and White, R. and Wierzcholska, A. and Wilcox, P. and Williams, D. A. and Wischnewski, R. and Wojcik, P. and Yamamoto, T. and Yamamoto, H. and Yamazaki, Ryo and Yanagita, S. and Yang, L. and Yoshida, T. and Yoshida, M. and Yoshiike, S. and Yoshikoshi, T. and Zacharias, M. and Zampieri, L. and Zanin, R. and Zavrtanik, M. and Zavrtanik, D. and Zdziarski, A. and Zech, Alraune and Zechlin, Hannes and Zhdanov, V. and Ziegler, A. and Zorn, J.}, title = {Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {840}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa6d67}, pages = {14}, year = {2017}, abstract = {We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.}, language = {en} } @article{RotheZhaoMuelleretal.2021, author = {Rothe, Martin and Zhao, Yuhang and M{\"u}ller, Johannes and Kewes, G{\"u}nter and Koch, Christoph T. and Lu, Yan and Benson, Oliver}, title = {Self-assembly of plasmonic nanoantenna-waveguide structures for subdiffractional chiral sensing}, series = {ACS nano}, volume = {15}, journal = {ACS nano}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.0c05240}, pages = {351 -- 361}, year = {2021}, abstract = {Spin-momentum locking is a peculiar effect in the near-field of guided optical or plasmonic modes. It can be utilized to map the spinning or handedness of electromagnetic fields onto the propagation direction. This motivates a method to probe the circular dichroism of an illuminated chiral object. In this work, we demonstrate local, subdiffraction limited chiral coupling of light and propagating surface plasmon polaritons in a self-assembled system of a gold nanoantenna and a silver nanowire. A thin silica shell around the nanowire provides precise distance control and also serves as a host for fluorescent molecules, which indicate the direction of plasmon propagation. We characterize our nanoantenna-nanowire systems comprehensively through correlated electron microscopy, energy-dispersive X-ray spectroscopy, dark-field, and fluorescence imaging. Three-dimensional numerical simulations support the experimental findings. Besides our measurement of far-field polarization, we estimate sensing capabilities and derive not only a sensitivity of 1 mdeg for the ellipticity of the light field, but also find 10(3) deg cm(2)/dmol for the circular dichroism of an analyte locally introduced in the hot spot of the antenna-wire system. Thorough modeling of a prototypical design predicts on-chip sensing of chiral analytes. This introduces our system as an ultracompact sensor for chiral response far below the diffraction limit.}, language = {en} } @article{LuBlakesleyHimmelbergeretal.2013, author = {Lu, Guanghao and Blakesley, James C. and Himmelberger, Scott and Pingel, Patrick and Frisch, Johannes and Lieberwirth, Ingo and Salzmann, Ingo and Oehzelt, Martin and Di Pietro, Riccardo and Salleo, Alberto and Koch, Norbert and Neher, Dieter}, title = {Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors}, series = {Nature Communications}, volume = {4}, journal = {Nature Communications}, number = {1-2}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms2587}, pages = {8}, year = {2013}, abstract = {Polymer transistors are being intensively developed for next-generation flexible electronics. Blends comprising a small amount of semiconducting polymer mixed into an insulating polymer matrix have simultaneously shown superior performance and environmental stability in organic field-effect transistors compared with the neat semiconductor. Here we show that such blends actually perform very poorly in the undoped state, and that mobility and on/off ratio are improved dramatically upon moderate doping. Structural investigations show that these blend layers feature nanometre-scale semiconductor domains and a vertical composition gradient. This particular morphology enables a quasi three-dimensional spatial distribution of semiconductor pathways within the insulating matrix, in which charge accumulation and depletion via a gate bias is substantially different from neat semiconductor, and where high on-current and low off-current are simultaneously realized in the stable doped state. Adding only 5 wt\% of a semiconducting polymer to a polystyrene matrix, we realized an environmentally stable inverter with gain up to 60.}, language = {en} } @article{LigorioNardiSteyrleuthneretal.2016, author = {Ligorio, G. and Nardi, M. V. and Steyrleuthner, Robert and Ihiawakrim, D. and Crespo-Monteiro, N. and Brinkmann, Martin and Neher, Dieter and Koch, N.}, title = {Metal nanoparticle mediated space charge and its optical control in an organic hole-only device}, series = {Applied physics letters}, volume = {108}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4945710}, pages = {5}, year = {2016}, abstract = {We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10(4) due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed. (C) 2016 AIP Publishing LLC.}, language = {en} } @article{ChaabeneMarkovPrieskeetal.2022, author = {Chaabene, Helmi and Markov, Adrian and Prieske, Olaf and Moran, Jason and Behrens, Martin and Negra, Yassine and Ramirez-Campillo, Rodrigo and Koch, Ulrike and Mkaouer, Bessem}, title = {Effect of flywheel versus traditional resistance training on change of direction performance in male athletes}, series = {International journal of environmental research and public health : IJERPH}, volume = {19}, journal = {International journal of environmental research and public health : IJERPH}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {1661-7827}, doi = {10.3390/ijerph19127061}, pages = {17}, year = {2022}, abstract = {Objective: This study aimed to systematically review and meta-analyze the effect of flywheel resistance training (FRT) versus traditional resistance training (TRT) on change of direction (CoD) performance in male athletes. Methods: Five databases were screened up to December 2021. Results: Seven studies were included. The results indicated a significantly larger effect of FRT compared with TRT (standardized mean difference [SMD] = 0.64). A within-group comparison indicated a significant large effect of FRT on CoD performance (SMD = 1.63). For TRT, a significant moderate effect was observed (SMD = 0.62). FRT of <= 2 sessions/week resulted in a significant large effect (SMD = 1.33), whereas no significant effect was noted for >2 sessions/week. Additionally, a significant large effect of <= 12 FRT sessions (SMD = 1.83) was observed, with no effect of >12 sessions. Regarding TRT, no significant effects of any of the training factors were detected (p > 0.05). Conclusions: FRT appears to be more effective than TRT in improving CoD performance in male athletes. Independently computed single training factor analyses for FRT indicated that <= 2 sessions/week resulted in a larger effect on CoD performance than >2 sessions/week. Additionally, a total of <= 12 FRT sessions induced a larger effect than >12 training sessions. Practitioners in sports, in which accelerative and decelerative actions occur in quick succession to change direction, should regularly implement FRT.}, language = {en} } @article{RotheZhaoKewesetal.2019, author = {Rothe, Martin and Zhao, Yuhang and Kewes, G{\"u}nter and Kochovski, Zdravko and Sigle, Wilfried and van Aken, Peter A. and Koch, Christoph and Ballauff, Matthias and Lu, Yan and Benson, Oliver}, title = {Silver nanowires with optimized silica coating as versatile plasmonic resonators}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-40380-5}, pages = {12}, year = {2019}, abstract = {Metal nanoparticles are the most frequently used nanostructures in plasmonics. However, besides nanoparticles, metal nanowires feature several advantages for applications. Their elongation offers a larger interaction volume, their resonances can reach higher quality factors, and their mode structure provides better coupling into integrated hybrid dielectric-plasmonic circuits. It is crucial though, to control the distance of the wire to a supporting substrate, to another metal layer or to active materials with sub-nanometer precision. A dielectric coating can be utilized for distance control, but it must not degrade the plasmonic properties. In this paper, we introduce a controlled synthesis and coating approach for silver nanowires to fulfill these demands. We synthesize and characterize silver nanowires of around 70 nm in diameter. These nanowires are coated with nm-sized silica shells using a modified Stober method to achieve a homogeneous and smooth surface quality. We use transmission electron microscopy, dark-field microscopy and electron-energy loss spectroscopy to study morphology and plasmonic resonances of individual nanowires and quantify the influence of the silica coating. Thorough numerical simulations support the experimental findings showing that the coating does not deteriorate the plasmonic properties and thus introduce silver nanowires as usable building blocks for integrated hybrid plasmonic systems.}, language = {en} } @article{StolterfohtCaprioglioWolffetal.2019, author = {Stolterfoht, Martin and Caprioglio, Pietro and Wolff, Christian Michael and Marquez, Jose A. and Nordmann, Joleik and Zhang, Shanshan and Rothhardt, Daniel and H{\"o}rmann, Ulrich and Amir, Yohai and Redinger, Alex and Kegelmann, Lukas and Zu, Fengshuo and Albrecht, Steve and Koch, Norbert and Kirchartz, Thomas and Saliba, Michael and Unold, Thomas and Neher, Dieter}, title = {The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells}, series = {Energy \& environmental science}, volume = {12}, journal = {Energy \& environmental science}, number = {9}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1754-5692}, doi = {10.1039/c9ee02020a}, pages = {2778 -- 2788}, year = {2019}, abstract = {Charge transport layers (CTLs) are key components of diffusion controlled perovskite solar cells, however, they can induce additional non-radiative recombination pathways which limit the open circuit voltage (V-OC) of the cell. In order to realize the full thermodynamic potential of the perovskite absorber, both the electron and hole transport layer (ETL/HTL) need to be as selective as possible. By measuring the photoluminescence yield of perovskite/CTL heterojunctions, we quantify the non-radiative interfacial recombination currents in pin- and nip-type cells including high efficiency devices (21.4\%). Our study comprises a wide range of commonly used CTLs, including various hole-transporting polymers, spiro-OMeTAD, metal oxides and fullerenes. We find that all studied CTLs limit the V-OC by inducing an additional non-radiative recombination current that is in most cases substantially larger than the loss in the neat perovskite and that the least-selective interface sets the upper limit for the V-OC of the device. Importantly, the V-OC equals the internal quasi-Fermi level splitting (QFLS) in the absorber layer only in high efficiency cells, while in poor performing devices, the V-OC is substantially lower than the QFLS. Using ultraviolet photoelectron spectroscopy and differential charging capacitance experiments we show that this is due to an energy level mis-alignment at the p-interface. The findings are corroborated by rigorous device simulations which outline important considerations to maximize the V-OC. This work highlights that the challenge to suppress non-radiative recombination losses in perovskite cells on their way to the radiative limit lies in proper energy level alignment and in suppression of defect recombination at the interfaces.}, language = {en} } @article{CaprioglioZuWolffetal.2019, author = {Caprioglio, Pietro and Zu, Fengshuo and Wolff, Christian Michael and Prieto, Jose A. Marquez and Stolterfoht, Martin and Becker, Pascal and Koch, Norbert and Unold, Thomas and Rech, Bernd and Albrecht, Steve and Neher, Dieter}, title = {High open circuit voltages in pin-type perovskite solar cells through strontium addition}, series = {Sustainable Energy \& Fuels}, volume = {3}, journal = {Sustainable Energy \& Fuels}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2398-4902}, doi = {10.1039/c8se00509e}, pages = {550 -- 563}, year = {2019}, abstract = {The incorporation of even small amounts of strontium (Sr) into lead-base hybrid quadruple cation perovskite solar cells results in a systematic increase of the open circuit voltage (V-oc) in pin-type perovskite solar cells. We demonstrate via absolute and transient photoluminescence (PL) experiments how the incorporation of Sr significantly reduces the non-radiative recombination losses in the neat perovskite layer. We show that Sr segregates at the perovskite surface, where it induces important changes of morphology and energetics. Notably, the Sr-enriched surface exhibits a wider band gap and a more n-type character, accompanied with significantly stronger surface band bending. As a result, we observe a significant increase of the quasi-Fermi level splitting in the neat perovskite by reduced surface recombination and more importantly, a strong reduction of losses attributed to non-radiative recombination at the interface to the C-60 electron-transporting layer. The resulting solar cells exhibited a V-oc of 1.18 V, which could be further improved to nearly 1.23 V through addition of a thin polymer interlayer, reducing the non-radiative voltage loss to only 110 meV. Our work shows that simply adding a small amount of Sr to the precursor solutions induces a beneficial surface modification in the perovskite, without requiring any post treatment, resulting in high efficiency solar cells with power conversion efficiency (PCE) up to 20.3\%. Our results demonstrate very high V-oc values and efficiencies in Sr-containing quadruple cation perovskite pin-type solar cells and highlight the imperative importance of addressing and minimizing the recombination losses at the interface between perovskite and charge transporting layer.}, language = {en} } @misc{WolffCanilRehermannetal.2020, author = {Wolff, Christian Michael and Canil, Laura and Rehermann, Carolin and Nguyen, Ngoc Linh and Zu, Fengshuo and Ralaiarisoa, Maryline and Caprioglio, Pietro and Fiedler, Lukas and Stolterfoht, Martin and Kogikoski, Junior, Sergio and Bald, Ilko and Koch, Norbert and Unger, Eva L. and Dittrich, Thomas and Abate, Antonio and Neher, Dieter}, title = {Correction to 'Perfluorinated self-assembled monolayers enhance the stability and efficiency of inverted perovskite solar cells' (2020, 14 (2), 1445-1456)}, series = {ACS nano}, volume = {14}, journal = {ACS nano}, number = {11}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1936-0851}, doi = {10.1021/acsnano.0c08081}, pages = {16156 -- 16156}, year = {2020}, language = {en} } @article{ZhangStolterfohtArminetal.2018, author = {Zhang, Shanshan and Stolterfoht, Martin and Armin, Ardalan and Lin, Qianqian and Zu, Fengshuo and Sobus, Jan and Jin, Hui and Koch, Norbert and Meredith, Paul and Burn, Paul L. and Neher, Dieter}, title = {Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells}, series = {ACS applied materials \& interfaces}, volume = {10}, journal = {ACS applied materials \& interfaces}, number = {25}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.8b02503}, pages = {21681 -- 21687}, year = {2018}, abstract = {Engineering the interface between the perovskite absorber and the charge-transporting layers has become an important method for improving the charge extraction and open-circuit voltage (V-OC) of hybrid perovskite solar cells. Conjugated polymers are particularly suited to form the hole-transporting layer, but their hydrophobicity renders it difficult to solution-process the perovskite absorber on top. Herein, oxygen plasma treatment is introduced as a simple means to change the surface energy and work function of hydrophobic polymer interlayers for use as p-contacts in perovskite solar cells. We find that upon oxygen plasma treatment, the hydrophobic surfaces of different prototypical p-type polymers became sufficiently hydrophilic to enable subsequent perovskite junction processing. In addition, the oxygen plasma treatment also increased the ionization potential of the polymer such that it became closer to the valance band energy of the perovskite. It was also found that the oxygen plasma treatment could increase the electrical conductivity of the p-type polymers, facilitating more efficient charge extraction. On the basis of this concept, inverted MAPbI(3) perovskite devices with different oxygen plasma-treated polymers such as P3HT, P3OT, polyTPD, or PTAA were fabricated with power conversion efficiencies of up to 19\%.}, language = {en} } @article{ZuWarbyStolterfohtetal.2021, author = {Zu, Fengshuo and Warby, Jonathan and Stolterfoht, Martin and Li, Jinzhao and Shin, Dongguen and Unger, Eva and Koch, Norbert}, title = {Photoinduced energy-level realignment at interfaces between organic semiconductors and metal-halide perovskites}, series = {Physical review letters}, volume = {127}, journal = {Physical review letters}, number = {24}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.127.246401}, pages = {6}, year = {2021}, abstract = {In contrast to the common conception that the interfacial energy-level alignment is affixed once the interface is formed, we demonstrate that heterojunctions between organic semiconductors and metal-halide perovskites exhibit huge energy-level realignment during photoexcitation. Importantly, the photoinduced level shifts occur in the organic component, including the first molecular layer in direct contact with the perovskite. This is caused by charge-carrier accumulation within the organic semiconductor under illumination and the weak electronic coupling between the junction components.}, language = {en} } @article{BrinkmannBeckerZimmermannetal.2022, author = {Brinkmann, Kai Oliver and Becker, Tim and Zimmermann, Florian and Kreusel, Cedric and Gahlmann, Tobias and Theisen, Manuel and Haeger, Tobias and Olthof, Selina and T{\"u}ckmantel, Christian and G{\"u}nster, M. and Maschwitz, Timo and G{\"o}belsmann, Fabian and Koch, Christine and Hertel, Dirk and Caprioglio, Pietro and Pe{\~n}a-Camargo, Francisco and Perdig{\´o}n-Toro, Lorena and Al-Ashouri, Amran and Merten, Lena and Hinderhofer, Alexander and Gomell, Leonie and Zhang, Siyuan and Schreiber, Frank and Albrecht, Steve and Meerholz, Klaus and Neher, Dieter and Stolterfoht, Martin and Riedl, Thomas}, title = {Perovskite-organic tandem solar cells with indium oxide interconnect}, series = {Nature}, volume = {604}, journal = {Nature}, number = {7905}, publisher = {Nature Research}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-022-04455-0}, pages = {280 -- 286}, year = {2022}, abstract = {Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures(1). Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported(2-5). Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells(6,7). Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (V-oc) of wide-gap perovskite cells(8) and losses introduced by the interconnect between the subcells(9,10). Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high V-oc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high V-oc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells(11), show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions(12) and are on a par with perovskite-CIGS and all-perovskite multijunctions(13).}, language = {en} } @article{GrischekCaprioglioZhangetal.2022, author = {Grischek, Max and Caprioglio, Pietro and Zhang, Jiahuan and Pena-Camargo, Francisco and Sveinbjornsson, Kari and Zu, Fengshuo and Menzel, Dorothee and Warby, Jonathan and Li, Jinzhao and Koch, Norbert and Unger, Eva and Korte, Lars and Neher, Dieter and Stolterfoht, Martin and Albrecht, Steve}, title = {Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells}, series = {Solar RRL}, volume = {6}, journal = {Solar RRL}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202200690}, pages = {12}, year = {2022}, abstract = {Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic-inorganic perovskites. This is mainly caused by lower open-circuit voltages (V(OC)s). Herein, the reasons for the low V-OC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity-dependent photoluminescence measurements for different layer stacks reveal that n-i-p and p-i-n CsPbI2Br solar cells exhibit a strong mismatch between quasi-Fermi level splitting (QFLS) and V-OC. Specifically, the CsPbI2Br p-i-n perovskite solar cell has a QFLS-e center dot V-OC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic-inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3\% with a MeO-2PACz hole-transporting layer and 20.8\% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS-e center dot V-OC mismatch and strategies for overcoming this V-OC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved.}, language = {en} } @article{WarbyZuZeiskeetal.2022, author = {Warby, Jonathan and Zu, Fengshuo and Zeiske, Stefan and Gutierrez-Partida, Emilio and Frohloff, Lennart and Kahmann, Simon and Frohna, Kyle and Mosconi, Edoardo and Radicchi, Eros and Lang, Felix and Shah, Sahil and Pena-Camargo, Francisco and Hempel, Hannes and Unold, Thomas and Koch, Norbert and Armin, Ardalan and De Angelis, Filippo and Stranks, Samuel D. and Neher, Dieter and Stolterfoht, Martin}, title = {Understanding performance limiting interfacial recombination in pin Perovskite solar cells}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202103567}, pages = {10}, year = {2022}, abstract = {Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto-electronic properties and their successful integration into multijunction cells. However, the performance of single- and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C-60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first-principle numerical simulations. It is found that the most significant contribution to the total C-60-induced recombination loss occurs within the first monolayer of C-60, rather than in the bulk of C-60 or at the perovskite surface. The experiments show that the C-60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C-60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells.}, language = {en} }