@misc{NorellJayHantschmannetal.2018, author = {Norell, Jesper and Jay, Raphael Martin and Hantschmann, Markus and Eckert, Sebastian and Guo, Meiyuan and Gaffney, Kelly J. and Wernet, Philippe and Lundberg, Marcus and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {779}, issn = {1866-8372}, doi = {10.25932/publishup-43749}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437493}, pages = {7243 -- 7253}, year = {2018}, abstract = {We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L-3-edge RIXS in the ferricyanide complex Fe(CN)(6)(3-), we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.}, language = {en} } @misc{GoswamiBoersRheinwaltetal.2018, author = {Goswami, Bedartha and Boers, Niklas and Rheinwalt, Aljoscha and Marwan, Norbert and Heitzig, Jobst and Breitenbach, Sebastian Franz Martin and Kurths, J{\"u}rgen}, title = {Abrupt transitions in time series with uncertainties}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {576}, issn = {1866-8372}, doi = {10.25932/publishup-42311}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423111}, pages = {10}, year = {2018}, abstract = {Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Nino-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an 'uncertainty-aware' framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon.}, language = {en} }