@article{RadchukReedTeplitskyetal.2019, author = {Radchuk, Viktoriia and Reed, Thomas and Teplitsky, Celine and van de Pol, Martijn and Charmantier, Anne and Hassall, Christopher and Adamik, Peter and Adriaensen, Frank and Ahola, Markus P. and Arcese, Peter and Miguel Aviles, Jesus and Balbontin, Javier and Berg, Karl S. and Borras, Antoni and Burthe, Sarah and Clobert, Jean and Dehnhard, Nina and de Lope, Florentino and Dhondt, Andre A. and Dingemanse, Niels J. and Doi, Hideyuki and Eeva, Tapio and Fickel, J{\"o}rns and Filella, Iolanda and Fossoy, Frode and Goodenough, Anne E. and Hall, Stephen J. G. and Hansson, Bengt and Harris, Michael and Hasselquist, Dennis and Hickler, Thomas and Jasmin Radha, Jasmin and Kharouba, Heather and Gabriel Martinez, Juan and Mihoub, Jean-Baptiste and Mills, James A. and Molina-Morales, Mercedes and Moksnes, Arne and Ozgul, Arpat and Parejo, Deseada and Pilard, Philippe and Poisbleau, Maud and Rousset, Francois and R{\"o}del, Mark-Oliver and Scott, David and Carlos Senar, Juan and Stefanescu, Constanti and Stokke, Bard G. and Kusano, Tamotsu and Tarka, Maja and Tarwater, Corey E. and Thonicke, Kirsten and Thorley, Jack and Wilting, Andreas and Tryjanowski, Piotr and Merila, Juha and Sheldon, Ben C. and Moller, Anders Pape and Matthysen, Erik and Janzen, Fredric and Dobson, F. Stephen and Visser, Marcel E. and Beissinger, Steven R. and Courtiol, Alexandre and Kramer-Schadt, Stephanie}, title = {Adaptive responses of animals to climate change are most likely insufficient}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-10924-4}, pages = {14}, year = {2019}, abstract = {Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.}, language = {en} } @article{HegerBernardVerdierGessleretal.2019, author = {Heger, Tina and Bernard-Verdier, Maud and Gessler, Arthur and Greenwood, Alex D. and Grossart, Hans-Peter and Hilker, Monika and Keinath, Silvia and Kowarik, Ingo and K{\"u}ffer, Christoph and Marquard, Elisabeth and Mueller, Johannes and Niemeier, Stephanie and Onandia, Gabriela and Petermann, Jana S. and Rillig, Matthias C. and Rodel, Mark-Oliver and Saul, Wolf-Christian and Schittko, Conrad and Tockner, Klement and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change}, series = {Bioscience}, volume = {69}, journal = {Bioscience}, number = {11}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0006-3568}, doi = {10.1093/biosci/biz095}, pages = {888 -- 899}, year = {2019}, abstract = {Global change has complex eco-evolutionary consequences for organisms and ecosystems, but related concepts (e.g., novel ecosystems) do not cover their full range. Here we propose an umbrella concept of "ecological novelty" comprising (1) a site-specific and (2) an organism-centered, eco-evolutionary perspective. Under this umbrella, complementary options for studying and communicating effects of global change on organisms, ecosystems, and landscapes can be included in a toolbox. This allows researchers to address ecological novelty from different perspectives, e.g., by defining it based on (a) categorical or continuous measures, (b) reference conditions related to sites or organisms, and (c) types of human activities. We suggest striving for a descriptive, non-normative usage of the term "ecological novelty" in science. Normative evaluations and decisions about conservation policies or management are important, but require additional societal processes and engagement with multiple stakeholders.}, language = {en} }