@article{TaftWiechertZhangetal.2013, author = {Taft, Linda and Wiechert, Uwe and Zhang, Hucai and Lei, Guoliang and Mischke, Steffen and Plessen, Birgit and Weynell, Marc and Winkler, Andreas and Riedel, Frank}, title = {Oxygen and carbon isotope patterns archived in shells of the aquatic gastropod Radix - hydrologic and climatic signals across the Tibetan Plateau in sub-monthly resolution}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {290}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2012.10.031}, pages = {282 -- 298}, year = {2013}, abstract = {The Tibetan Plateau (TP), including its surrounding mountain ranges, represents the largest store of ice outside the polar regions. It hosts numerous lakes as well as the head waters of major Asian rivers, on which billions of people depend, and it is particularly sensitive to climate change. The moisture transport to the TP is controlled by the Indian and Pacific monsoon and the Westerlies. Understanding the evolution of the interaction of these circulation systems requires studies on climate archives in different spatial and temporal contexts. The objective of this study is to learn more about the interannual variability of precipitation patterns across the TP and how different hydrologic systems react to different climatic factors. Aragonite shells of the aquatic gastropod Radix, which is widely distributed in the region, may represent suitable archives for inferring hydrologic and climatic signals in particularly high resolution. Therefore, sclerochronological studies of delta O-18 and delta C-13 ratios in Radix shells from seven lakes were conducted, each representing a different hydrologic and climatic setting, on a transect from the Pamirs across the TP. The shell patterns exhibit an increasing influence of precipitation and a decreasing influence of evaporation on the isotope compositions from west to east. delta O-18 values of shells from lakes on the eastern and central TP (Donggi Cona, Yamdrok Yumco, Tarab Co) mirror monsoon signals, indicated by more negative values and higher variabilities compared to the more western lakes (Karakul, Bangong/Nyak, Manasarovar). In Yadang Co, located on the central southern TP, the monsoon rains did not reach the lake in the sampling year, although it is located in a region which is usually affected by monsoon circulation. The delta O-18 values are used to differentiate the annual hydrological cycle into ice cover period, melt water period, precipitation period and evaporation period. delta C-13 compositions in the shells particularly depend on specific habitats, which vary in biological productivity and in carbon sources. delta O-18 and delta C-13 patterns show a positive covariance in shells originating from large closed basins. The results show that Radix shells mirror general climatic differences between the seven lake regions. These differences reflect both regional and local climate signals in sub-seasonal resolution, without noticeable dependence on the particular lake system.}, language = {en} } @article{SarauliRiedelWettsteinetal.2012, author = {Sarauli, David and Riedel, Marc and Wettstein, Christoph and Hahn, Robert and Stiba, Konstanze and Wollenberger, Ursula and Leimk{\"u}hler, Silke and Schmuki, Patrik and Lisdat, Fred}, title = {Semimetallic TiO2 nanotubes new interfaces for bioelectrochemical enzymatic catalysis}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {11}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm16427b}, pages = {4615 -- 4618}, year = {2012}, abstract = {Different self-organized TiO2 nanotube structures are shown to represent new interfaces for the achievement of bioelectrochemical enzymatic catalysis involving redox proteins and enzymes without further surface modification or the presence of mediators.}, language = {en} } @phdthesis{Riedel2018, author = {Riedel, Marc}, title = {Photonic wiring of enzymatic reactions to photoactive entities for the construction of biohybrid electrodes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417280}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 168}, year = {2018}, abstract = {In this work, different strategies for the construction of biohybrid photoelectrodes are investigated and have been evaluated according to their intrinsic catalytic activity for the oxidation of the cofactor NADH or for the connection with the enzymes PQQ glucose dehydrogenase (PQQ-GDH), FAD-dependent glucose dehydrogenase (FAD-GDH) and fructose dehydrogenase (FDH). The light-controlled oxidation of NADH has been analyzed with InGaN/GaN nanowire-modified electrodes. Upon illumination with visible light the InGaN/GaN nanowires generate an anodic photocurrent, which increases in a concentration-dependent manner in the presence of NADH, thus allowing determination of the cofactor. Furthermore, different approaches for the connection of enzymes to quantum dot (QD)-modified electrodes via small redox molecules or redox polymers have been analyzed and discussed. First, interaction studies with diffusible redox mediators such as hexacyanoferrate(II) and ferrocenecarboxylic acid have been performed with CdSe/ZnS QD-modified gold electrodes to build up photoelectrochemical signal chains between QDs and the enzymes FDH and PQQ-GDH. In the presence of substrate and under illumination of the electrode, electrons are transferred from the enzyme via the redox mediators to the QDs. The resulting photocurrent is dependent on the substrate concentration and allows a quantification of the fructose and glucose content in solution. A first attempt with immobilized redox mediator, i.e. ferrocenecarboxylic acid chemically coupled to PQQ-GDH and attached to QD-modified gold electrodes, reveal the potential to build up photoelectrochemical signal chains even without diffusible redox mediators in solution. However, this approach results in a significant deteriorated photocurrent response compared to the situation with diffusing mediators. In order to improve the photoelectrochemical performance of such redox mediator-based, light-switchable signal chains, an osmium complex-containing redox polymer has been evaluated as electron relay for the electronic linkage between QDs and enzymes. The redox polymer allows the stable immobilization of the enzyme and the efficient wiring with the QD-modified electrode. In addition, a 3D inverse opal TiO2 (IO-TiO2) electrode has been used for the integration of PbS QDs, redox polymer and FAD-GDH in order to increase the electrode surface. This results in a significantly improved photocurrent response, a quite low onset potential for the substrate oxidation and a broader glucose detection range as compared to the approach with ferrocenecarboxylic acid and PQQ-GDH immobilized on CdSe/ZnS QD-modified gold electrodes. Furthermore, IO-TiO2 electrodes are used to integrate sulfonated polyanilines (PMSA1) and PQQ-GDH, and to investigate the direct interaction between the polymer and the enzyme for the light-switchable detection of glucose. While PMSA1 provides visible light excitation and ensures the efficient connection between the IO-TiO2 electrode and the biocatalytic entity, PQQ-GDH enables the oxidation of glucose. Here, the IO-TiO2 electrodes with pores of approximately 650 nm provide a suitable interface and morphology, which is required for a stable and functional assembly of the polymer and enzyme. The successful integration of the polymer and the enzyme can be confirmed by the formation of a glucose-dependent anodic photocurrent. In conclusion, this work provides insights into the design of photoelectrodes and presents different strategies for the efficient coupling of redox enzymes to photoactive entities, which allows for light-directed sensing and provides the basis for the generation of power from sun light and energy-rich compounds.}, language = {en} }