@inproceedings{ZeilingerMuttiStreckeretal.2006, author = {Zeilinger, Gerold and Mutti, Maria and Strecker, Manfred and Rehak, Katrin and Bookhagen, Bodo and Schwab, Marco}, title = {Integration of digital elevation models and satellite images to investigate geological processes.}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7063}, year = {2006}, abstract = {In order to better understand the geological boundary conditions for ongoing or past surface processes geologists face two important questions: 1) How can we gain additional knowledge about geological processes by analyzing digital elevation models (DEM) and satellite images and 2) Do these efforts present a viable approach for more efficient research. Here, we will present case studies at a variety of scales and levels of resolution to illustrate how we can substantially complement and enhance classical geological approaches with remote sensing techniques. Commonly, satellite and DEM based studies are being used in a first step of assessing areas of geologic interest. While in the past the analysis of satellite imagery (e.g. Landsat TM) and aerial photographs was carried out to characterize the regional geologic characteristics, particularly structure and lithology, geologists have increasingly ventured into a process-oriented approach. This entails assessing structures and geomorphic features with a concept that includes active tectonics or tectonic activity on time scales relevant to humans. In addition, these efforts involve analyzing and quantifying the processes acting at the surface by integrating different remote sensing and topographic data (e.g. SRTM-DEM, SSM/I, GPS, Landsat 7 ETM, Aster, Ikonos…). A combined structural and geomorphic study in the hyperarid Atacama desert demonstrates the use of satellite and digital elevation data for assessing geological structures formed by long-term (millions of years) feedback mechanisms between erosion and crustal bending (Zeilinger et al., 2005). The medium-term change of landscapes during hundred thousands to millions years in a more humid setting is shown in an example from southern Chile. Based on an analysis of rivers/watersheds combined with landscapes parameterization by using digital elevation models, the geomorphic evolution and change in drainage pattern in the coastal Cordillera can be quantified and put into the context of seismotectonic segmentation of a tectonically active region. This has far-reaching implications for earthquake rupture scenarios and hazard mitigation (K. Rehak, see poster on IMAF Workshop). Two examples illustrate short-term processes on decadal, centennial and millennial time scales: One study uses orogen scale precipitation gradients derived from remotely sensed passive microwave data (Bookhagen et al., 2005a). They demonstrate how debris flows were triggered as a response of slopes to abnormally strong rainfall in the interior parts of the Himalaya during intensified monsoons. The area of the orogen that receives high amounts of precipitation during intensified monsoons also constitutes numerous landslide deposits of up to 1km3 volume that were generated during intensified monsoon phase at about 27 and 9 ka (Bookhagen et al., 2005b). Another project in the Swiss Alps compared sets of aerial photographs recorded in different years. By calculating high resolution surfaces the mass transport in a landslide could be reconstructed (M. Schwab, Universit{\"a}t Bern). All these examples, although representing only a short and limited selection of projects using remote sense data in geology, have as a common approach the goal to quantify geological processes. With increasing data resolution and new sensors future projects will even enable us to recognize more patterns and / or structures indicative of geological processes in tectonically active areas. This is crucial for the analysis of natural hazards like earthquakes, tsunamis and landslides, as well as those hazards that are related to climatic variability. The integration of remotely sensed data at different spatial and temporal scales with field observations becomes increasingly important. Many of presently highly populated places and increasingly utilized regions are subject to significant environmental pressure and often constitute areas of concentrated economic value. Combined remote sensing and ground-truthing in these regions is particularly important as geologic, seismicity and hydrologic data may be limited here due to the recency of infrastructural development. Monitoring ongoing processes and evaluating the remotely sensed data in terms of recurrence of events will greatly enhance our ability to assess and mitigate natural hazards.
Dokument 1: Foliensatz | Dokument 2: Abstract
Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006}, language = {en} } @article{OzsayinCinerRojayetal.2013, author = {Ozsayin, Erman and Ciner, T. Attila and Rojay, F. Bora and Dirik, R. Kadir and Melnick, Daniel and Fernandez-Blanco, David and Bertotti, Giovanni and Schildgen, Taylor F. and Garcin, Yannick and Strecker, Manfred and Sudo, Masafumi}, title = {Plio-Quaternary extensional tectonics of the Central Anatolian Plateau a case study from the Tuz Golu Basin, Turkey}, series = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, volume = {22}, journal = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, number = {5}, publisher = {T{\"u}bitak}, address = {Ankara}, issn = {1300-0985}, doi = {10.3906/yer-1210-5}, pages = {691 -- 714}, year = {2013}, abstract = {The Tuz Golu Basin is the largest sedimentary depression located at the center of the Central Anatolian Plateau, an extensive, low-relief region with elevations of ca. 1 km located between the Pontide and Tauride mountains. Presently, the basin morphology and sedimentation processes are mainly controlled by the extensional Tuz Golu Fault Zone in the east and the transtensional Inonu-Eskisehir Fault System in the west. The purpose of this study is to contribute to the understanding of the Plio-Quaternary deformation history and to refine the timing of the latest extensional phase of the Tuz Golu Basin. Field observations, kinematic analyses, interpretations of seismic reflection lines, and Ar-40/Ar-39 dating of a key ignimbrite layer suggest that a regional phase of NNW-SSE to NE-SW contraction ended by 6.81 +/- 0.24 Ma and was followed by N-S to NE-SW extension during the Pliocene-Quaternary periods. Based on sedimentological and chronostratigraphic markers, the average vertical displacement rates over the past 5 or 3 Ma with respect to the central part of Tuz Golu Lake are 0.03 to 0.05 mm/year for the fault system at the western flank of the basin and 0.08 to 0.13 mm/year at the eastern flank. Paleo-shorelines of the Tuz Golu Lake, vestiges of higher lake levels related to Quaternary climate change, are important strain markers and were formed during Last Glacial Maximum conditions as indicated by a radiocarbon age of 21.8 +/- 0.4 ka BP obtained from a stromatolitic crust. Geomorphic observations and deformed lacustrine shorelines suggest that the main strand of the Tuz Golu Fault Zone straddling the foothills of the Sereflikochisar-Aksaray range has not been active during the Holocene. Instead, deformation appears to have migrated towards the interior of the basin along an offshore fault that runs immediately west of Sereflikochisar Peninsula. This basinward migration of deformation is probably associated with various processes acting at the lithospheric scale, such as plateau uplift and/or microplate extrusion.}, language = {en} } @article{BallatoUbaLandgrafetal.2011, author = {Ballato, Paolo and Uba, Cornelius Eji and Landgraf, Angela and Strecker, Manfred and Sudo, Masafumi and Stockli, Daniel F. and Friedrich, Anke M. and Tabatabaei, Saeid H.}, title = {Arabia-Eurasia continental collision insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran}, series = {Geological Society of America bulletin}, volume = {123}, journal = {Geological Society of America bulletin}, number = {1-2}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B30091.1}, pages = {106 -- 131}, year = {2011}, abstract = {A poorly understood lag time of 15-20 m.y. exists between the initial Arabia-Eurasia continental collision in late Eocene to early Oligocene time and the acceleration of tectonic and sedimentary processes across the collision zone in the early to late Miocene. The late Eocene to Miocene-Pliocene clastic and shallow-marine sedimentary rocks of the Kond, Eyvanekey, and Semnan Basins in the Alborz Mountains (northern Iran) offer the possibility to track the evolution of this orogen in the framework of collision processes. A transition from volcaniclastic submarine deposits to shallow-marine evaporites and terrestrial sediments occurred shortly after 36 Ma in association with reversals in sediment provenance, strata tilting, and erosional unroofing. These events followed the termination of subduction arc magmatism and marked a changeover from an extensional to a contractional regime in response to initiation of continental collision with the subduction of stretched Arabian lithosphere. This early stage of collision produced topographic relief associated with shallow foreland basins, suggesting that shortening and tectonic loading occurred at low rates. Starting from the early Miocene (17.5 Ma), flexural subsidence in response to foreland basin initiation occurred. Fast sediment accumulation rates and erosional unroofing trends point to acceleration of shortening by the early Miocene. We suggest that the lag time between the initiation of continental collision (36 Ma) and the acceleration of regional deformation (20-17.5 Ma) reflects a two-stage collision process, involving the "soft" collision of stretched lithosphere at first and "hard" collision following the arrival of unstretched Arabian continental litho sphere in the subduction zone.}, language = {en} } @article{GuzmanStreckerMartietal.2017, author = {Guzman, Silvina and Strecker, Manfred and Marti, Joan and Petrinovic, Ivan A. and Schildgen, Taylor F. and Grosse, Pablo and Montero-Lopez, Carolina and Neri, Marco and Carniel, Roberto and D. Hongn, Fernando and Muruaga, Claudia and Sudo, Masafumi}, title = {Construction and degradation of a broad volcanic massif: The Vicuna Pampa volcanic complex, southern Central Andes, NW Argentina}, series = {Geological Society of America bulletin}, volume = {129}, journal = {Geological Society of America bulletin}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B31631.1}, pages = {750 -- 766}, year = {2017}, abstract = {The Vicuna Pampa volcanic complex, at the SE edge of the arid Puna Plateau of the Central Andes, records the interplay between volcanic construction and degra-dational processes. The low-sloping Vicuna Pampa volcanic complex, with a 1200-m-deep, southeastward-opening depression, was previously interpreted as a collapse caldera based on morphological considerations. However, characteristic features associated with collapse calderas do not exist, and close inspection instead suggests that the Vicuna Pampa volcanic complex is a strongly eroded, broad, massif-type composite volcano of mainly basaltic to trachyandesitic composition. Construction of the Vicuna Pampa volcanic complex occurred during two distinct cycles separated by the development of the depression. The first and main cycle took place at ca. 12 Ma and was dominated by lava flows and subordinate scoria cones and domes. The second cycle, possibly late Miocene in age, affected the SW portion of the depression with the emplacement of domes. We interpret the central depression as the result of a possible sector collapse and subsequent intense fluvial erosion during middle to late Miocene time, facilitated by faulting, steepened topography, and wetter climate conditions compared to today. We estimate that similar to 65\% of the initial edifice of similar to 240 km(3) was degraded. The efficiency of degradation processes for removing mass from the Vicuna Pampa volcanic complex is surprising, considering that today the region is arid, and the stream channels within the complex are predominantly transport limited, forming a series of coalesced, aggraded alluvial fans and eolian infill. Hence, the Vicuna Pampa volcanic complex records the effects of past degradation efficiency that differs substantially from that of today.}, language = {en} } @article{EugsterThiedeScherleretal.2018, author = {Eugster, Patricia and Thiede, Rasmus Christoph and Scherler, Dirk and St{\"u}bner, Konstanze and Sobel, Edward and Strecker, Manfred}, title = {Segmentation of the Main Himalayan Thrust Revealed by Low-Temperature Thermochronometry in the Western Indian Himalaya}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2017TC004752}, pages = {2710 -- 2726}, year = {2018}, abstract = {Despite remarkable tectonostratigraphic similarities along the Himalayan arc, pronounced topographic and exhumational variability exists in different morphotectonic segments. The processes responsible for this segmentation are debated. Of particular interest is a 30- to 40-km-wide orogen-parallel belt of rapid exhumation that extends from central Nepal to the western Himalaya and its possible linkage to a midcrustal ramp in the basal decollement, and the related growth of Lesser Himalayan duplex structures. Here we present 26 new apatite fission track cooling ages from the Beas-Lahul region, at the transition from the Central to the Western Himalaya (77 degrees-78 degrees E) to investigate segmentation in the Himalayan arc from a thermochronologic perspective. Together with previously published data from this part of the orogen, we document significant lateral changes in exhumation between the Dhauladar Range to the west, the Beas-Lahul region, and the Sutlej area to the east of the study area. In contrast to the Himalayan front farther east, exhumation in the far western sectors is focused at the frontal parts of the mountain range and associated with the hanging wall of the Main Boundary Thrust fault ramp. Our results allow us to spatially correlate the termination of the rapid exhumation belt with a midcrustal ramp to the west. We suggest that a plunging anticline at the northwestern edge of the Larji-Kullu-Rampur window represents the termination of the Central Himalayan segment, which is related to the evolution of the Lesser Himalayan duplex. Key Points}, language = {en} } @article{CoutandCarrapaDeekenetal.2006, author = {Coutand, Isabelle and Carrapa, Barbara and Deeken, Anke and Schmitt, Axel K. and Sobel, Edward and Strecker, Manfred}, title = {Propagation of orographic barriers along an active range front : insights from sandstone petrography and detrital apatite fission-track thermochronology in the intramontane Angastaco basin, NW Argentina}, issn = {0950-091X}, doi = {10.1111/j.1365-2117.2006.00283.x}, year = {2006}, abstract = {The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen-traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low-relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission-track thermochronology from a similar to 6200-m-thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes. Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began similar to 15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After similar to 13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission-track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes}, language = {en} } @article{ParraMoraJaramilloetal.2009, author = {Parra, Mauricio and Mora, Andr{\´e}s and Jaramillo, Carlos and Strecker, Manfred and Sobel, Edward and Quiroz, Luis and Rueda, Milton and Torres, Vladimir}, title = {Orogenic wedge advance in the northern Andes : evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia}, issn = {0016-7606}, doi = {10.1130/B26257.1}, year = {2009}, abstract = {Foreland basin development in the Andes of central Colombia has been suggested to have started in the Late Cretaceous through tectonic loading of the Central Cordillera. Eastward migration of the Cenozoic orogenic front has also been inferred from the foreland basin record west of the Eastern Cordillera. However, farther east, limited data provided by foreland basin strata and the adjacent Eastern Cordillera complicate any correlation among mountain building, exhumation, and foreland basin sedimentation. In this study, we present new data from the Medina Basin in the eastern foothills of the Eastern Cordillera of Colombia. We report sedimentological data and palynological ages that link an eastward-thinning early Oligocene to early Miocene syntectonic wedge containing rapid facies changes with an episode of fast tectonic subsidence starting at ca. 31 Ma. This record may represent the first evidence of topographic loading generated by slip along the principal basement-bounding thrusts in the Eastern Cordillera to the southwest of the basin. Zircon fission-track ages and paleo-current analysis reveal the location of these thrust loads and illustrate a time lag between the sedimentary signal of topographic loading and the timing of exhumation (ca. 18 Ma). This lag may reflect the period between the onset of range uplift and significant removal of overburden. Vitrinite reflectance data document northward along-strike propagation of the deformation front and folding of the Oligocene syntectonic wedge. This deformation was coupled with a nonuniform incorporation of the basin into the wedge-top depozone. Thus, our data set constitutes unique evidence for the early growth and propagation of the deformation front in the Eastern Cordillera, which may also improve our understanding of spatiotemporal patterns of foreland evolution in other mountain belts.}, language = {en} } @article{ParraMoraSobeletal.2009, author = {Parra, Mauricio and Mora, Andr{\´e}s and Sobel, Edward and Strecker, Manfred and Gonz{\´a}lez, Rom{\´a}n}, title = {Episodic orogenic front migration in the northern Andes : constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia}, issn = {0278-7407}, doi = {10.1029/2008tc002423}, year = {2009}, abstract = {New thermochronometric data from the Eastern Cordillera of the Colombian Andes reveal diachronous exhumation associated with Cenozoic contractional deformation in this sector of the northern Andes. We present a comprehensive account of exhumation patterns along a 150-km-long, across-strike transect between similar to 4 degrees and 6 degrees N by integrating 29 new apatite fission track (AFT) ages and 17 new zircon fission track (ZFT) ages with sparse published thermochronological data from this area. Our data reveal episodic eastward migration of the orogenic front at an average rate of 2.5-2.7 mm/a during the Late Cretaceous-Cenozoic. We identify three major stages of orogen propagation: (1) slow propagation (0.5-3.1 mm/a) until early Eocene; (2) rapid orogenic advance (4.0-18.0 mm/a) during middle-late Eocene, which accounts for similar to 86\% of the orogen's present width; and (3) slow orogen propagation (1.2-2.1 mm/a) from Oligocene to Holocene times. Our data demonstrate that in the course of changes in plate kinematics, the presence of inherited crustal anisotropies, such as the former rift-bounding faults of the Eastern Cordillera, favor a nonsystematic progression of foreland basin deformation through time by preferentially concentrating accommodation of slip and thrust loading along these zones of weakness.}, language = {en} } @article{AlonsoBookhagenCarrapaetal.2006, author = {Alonso, Ricardo N. and Bookhagen, Bodo and Carrapa, Barbara and Coutand, Isabelle and Haschke, Michael and Hilley, George E. and Schoenbohm, Lindsay M. and Sobel, Edward and Strecker, Manfred and Trauth, Martin H. and Villanueva, Arturo}, title = {Tectonics, climate and landscape evolution of the Southern Central Andes : the Argentine Puna Plateau and adjacent regions between 22 and 30°S}, isbn = {978-3-540- 24329-8}, year = {2006}, language = {en} } @article{DeekenThiedeSobeletal.2011, author = {Deeken, Anke and Thiede, Rasmus Christoph and Sobel, Edward and Hourigan, J. K. and Strecker, Manfred}, title = {Exhumational variability within the Himalaya of northwest India}, series = {Earth \& planetary science letters}, volume = {305}, journal = {Earth \& planetary science letters}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.02.045}, pages = {103 -- 114}, year = {2011}, abstract = {In the Himalaya of Chamba, NW India, a major orographic barrier in front of the Greater Himalayan Range extracts a high proportion of the monsoonal rainfall along its southern slopes and effectively shields the orogen interior from moisture-bearing winds. Along a similar to 100-km-long orogen perpendicular transect, 28 new apatite fission track (AFT) and 30 new zircon (U-Th)/He (ZHe) cooling ages reveal marked variations in age distributions and long-term exhumation rates between the humid frontal range and the semi-arid orogen interior. On the southern topographic front, very young, elevation-invariant AFT ages of <4 Ma have been obtained that are concentrated in a similar to 30-km-wide zone; 1-D-thermal modeling suggests a Plio-Pleistocene mean erosion rate of 0.8-1.9 mm yr(-1). In contrast, AFT and ZHe ages within the orogen interior are older (4-9 and 7-18 Ma, respectively), are positively correlated with sample elevation, and yield lower mean erosion rates (0.3-0.9 mm yr(-1)). Protracted low exhumation rates within the orogen interior over the last similar to 15 Myr prevailed contemporaneously with overall humid conditions and an effective erosional regime within the southern Himalaya. This suggests that the frontal Dhauladar Range was sufficiently high during this time to form an orographic barrier, focusing climatically enhanced erosional processes and tectonic deformation there. Thrusting along the two frontal range-bounding thrust, the Main Central Thrust and the Main Boundary Thrusts, was initiated at least similar to 15 Ma ago and has remained localized since then. The lack of evidence for localized uplift farther north indicates either a rather flat decollement with no ramp or the absence of active duplex systems beneath the interior of Chamba. Exhumational variability within Chamba is best explained as the result of continuous thrusting along a major basal decollement, with a flat beneath the slowly exhuming internal compartments and a steep frontal ramp at the rapidly exhuming frontal range. The pattern in Chamba contrasts with what is observed elsewhere along the Himalaya, where exhumation is focused in a zone similar to 150 km north of the orogenic front. In the NW Himalaya, preserved High Himalayan Crystalline nappes and Lesser Himalayan windows alternate on a relatively small scale of <100 km; these alternations are closely correlated with the pattern of exhumation. Although the spatial distribution of high-exhumation zones varies considerably between individual Himalayan sectors, all of these zones are closely correlated with locally higher rock-uplift rates, sharp topographic discontinuities, and focused orographic precipitation, suggesting strong feedbacks between tectonically driven rock uplift, orographically enhanced precipitation, and erosional processes.}, language = {en} } @article{SobelSchoenbohmChenetal.2011, author = {Sobel, Edward and Schoenbohm, Lindsay M. and Chen, Jie and Thiede, Rasmus Christoph and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis}, series = {EARTH AND PLANETARY SCIENCE LETTERS}, volume = {304}, journal = {EARTH AND PLANETARY SCIENCE LETTERS}, number = {3-4}, publisher = {ELSEVIER SCIENCE BV}, address = {AMSTERDAM}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.02.012}, pages = {369 -- 378}, year = {2011}, abstract = {The timing of the late Cenozoic collision between the Pamir salient and the Tien Shan as well as changes in the relative motion between the Pamir and Tarim are poorly constrained. The northern margin of the Pamir salient indented northward by similar to 300 km during the late Cenozoic, accommodated by south-dipping intracontinental subduction along the Main Pamir Thrust (MPT) coupled to strike-slip faults on the eastern flank of the orogen and both strike-slip and thrust faults on the western margin. The Kashgar-Yecheng transfer system (KYTS) is the main dextral slip shear zone separating Tarim from the Eastern Pamir, with an estimated cumulative offset of similar to 280 km at an average late Cenozoic dextral slip rate of 11-15 mm/a (Cowgill, 2010). In order to better constrain the slip history of the KYTS, we collected thermochronologic samples along the eastward-flowing, deeply incised, antecedent Tashkorgan-Yarkand River, which crosses the fault system on the eastern flank of the orogen. We present 29 new biotite (40)Ar/(39)Ar ages, apatite and zircon (U-Th-Sm)/He ages, and apatite fission track (AFT) analysis, combined with published muscovite and biotite (40)Ar/(39)Ar and AFT data, to create a unique thermochronologic dataset in this poorly studied and remote region. We constrain the timing of four major N-trending faults: the latter three are strands of the KYTS. The westernmost, the Kuke fault, experienced significant dip-slip, west-side-up displacement between > 12 and 6 Ma. To the east, within the KYTS, our new thermochronologic data and geomorphic observations suggest that the Kumtag and Kusilaf dextral slip faults have been inactive since at least 3-5 Ma. Long-term incision rates across the Aertashi dextral slip fault, the easternmost strand of the KYTS, are compatible with slow horizontal slip rates of 1.7-5.3 mm/a over the past 3 to 5 Ma. In summary, these data show that the slip rate of the KYTS decreased substantially during the late Miocene or Pliocene. Furthermore, Miocene-present regional kinematic reconstructions suggest that this deceleration reflects the substantial increase of northward motion of Tarim rather than a significant decrease of the northward velocity of the Pamir. (C) 2011 Elsevier B.V. All rights reserved.}, language = {en} } @article{ThiedeSobelChenetal.2013, author = {Thiede, Rasmus Christoph and Sobel, Edward and Chen, Jie and Schoenbohm, Lindsay M. and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Late Cenozoic extension and crustal doming in the India-Eurasia collision zone new thermochronologic constraints from the NE Chinese Pamir}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20050}, pages = {763 -- 779}, year = {2013}, abstract = {The northward motion of the Pamir indenter with respect to Eurasia has resulted in coeval thrusting, strike-slip faulting, and normal faulting. The eastern Pamir is currently deformed by east-west oriented extension, accompanied by uplift and exhumation of the Kongur Shan (7719m) and Muztagh Ata (7546m) gneiss domes. Both domes are an integral part of the footwall of the Kongur Shan extensional fault system (KES), a 250 km long, north-south oriented graben. Why active normal faulting within the Pamir is primarily localized along the KES and not distributed more widely throughout the orogen has remained unclear. In addition, relatively little is known about how deformation has evolved throughout the Cenozoic, despite refined estimates on present-day crustal deformation rates and microseismicity, which indicate where crustal deformation is presently being accommodated. To better constrain the spatiotemporal evolution of faulting along the KES, we present 39 new apatite fission track, zircon U-Th-Sm/He, and Ar-40/Ar-39 cooling ages from a series of footwall transects along the KES graben shoulder. Combining these data with present-day topographic relief, 1-D thermokinematic and exhumational modeling documents successive stages, rather than synchronous deformation and gneiss dome exhumation. While the exhumation of the Kongur Shan commenced during the late Miocene, extensional processes in the Muztagh Ata massif began earlier and have slowed down since the late Miocene. We present a new model of synorogenic extension suggesting that thermal and density effects associated with a lithospheric tear fault along the eastern margin of the subducting Alai slab localize extensional upper plate deformation along the KES and decouple crustal motion between the central/western Pamir and eastern Pamir/Tarim basin.}, language = {en} } @article{SobelChenSchoenbohmetal.2013, author = {Sobel, Edward and Chen, Jie and Schoenbohm, Lindsay M. and Thiede, Rasmus Christoph and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen}, series = {Earth \& planetary science letters}, volume = {363}, journal = {Earth \& planetary science letters}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.12.009}, pages = {204 -- 218}, year = {2013}, abstract = {The northern part of the Pamir orogen is the preeminent example of an active intracontinental subduction zone in the early stages of continent-continent collision. Such zones are the least understood type of plate boundaries because modern examples are few and of limited access, and ancient analogs have been extensively overprinted by subsequent tectonic and erosion processes. In the Pamir, it has been assumed that most of the plate convergence was accommodated by overthrusting along the plate-bounding Main Pamir Thrust (MPT), which forms the principal northern mountain and deformation front of the Pamir. However, the synopsis of our new and previously published thermochronologic data from this region shows that the hanging wall of the MPT experienced relatively minor amounts of late Cenozoic exhumation. The Pamir orogen as a whole is an integral part of the overriding plate in a subduction system, while the remnant basin to the north constitutes the downgoing plate, with the bulk of the convergence accommodated by underthrusting. Herein, we demonstrate that the observed deformation of the upper and lower plates within the Pamir-Alai convergence zone resembles highly arcuate oceanic subduction systems characterized by slab rollback, subduction erosion, subduction accretion, and marginal slab-tear faults. We suggest that the curvature of the North Pamir is genetically linked to the short width and rollback of the south-dipping Alai slab; northward motion (indentation) of the Pamir is accommodated by crustal processes related to this rollback. The onset of south-dipping subduction is tentatively linked to intense Pamir contraction following break-off of the north-dipping Indian slab beneath the Karakoram.}, language = {en} } @article{StreckerAlonsoBookhagenetal.2009, author = {Strecker, Manfred and Alonso, Ricardo N. and Bookhagen, Bodo and Carrapa, Barbara and Coutand, Isabelle and Hain, Mathis P. and Hilley, George E. and Mortimer, Estelle and Schoenbohm, Lindsay M. and Sobel, Edward}, title = {Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?}, issn = {0091-7613}, doi = {10.1130/G25545a.1}, year = {2009}, abstract = {Orogenic plateaus are extensive, high-elevation areas with low internal relief that have been attributed to deep-seated and/or climate-driven surface processes. In the latter case, models predict that lateral plateau growth results from increasing aridity along the margins as range uplift shields the orogen interior from precipitation. We analyze the spatiotemporal progression of basin isolation and filling at the eastern margin of the Puna Plateau of the Argentine Andes to determine if the topography predicted by such models is observed. We find that the timing of basin filling and reexcavation is variable, suggesting nonsystematic plateau growth. Instead, the Airy isostatically compensated component of topography constitutes the majority of the mean elevation gain between the foreland and the plateau. This indicates that deep-seated phenomena, such as changes in crustal thickness and/or lateral density, are required to produce high plateau elevations. In contrast, the frequency of the uncompensated topography within the plateau and in the adjacent foreland that is interrupted by ranges appears similar, although the amplitude of this topographic component increases east of the plateau. Combined with sedimentologic observations, we infer that the low internal relief of the plateau likely results from increased aridity and sediment storage within the plateau and along its eastern margin.}, language = {en} } @article{CarrapaStreckerSobel2006, author = {Carrapa, Barbara and Strecker, Manfred and Sobel, Edward}, title = {Cenozoic orogenic growth in the Central Andes : evidence from sedimentary rock provenance and apatite fission track thermochronology in the Fiambala Basin, southernmost Puna Plateau margin (NW Argentina)}, issn = {0012-821X}, doi = {10.1016/j.epsl.2006.04.010}, year = {2006}, abstract = {Intramontane sedimentary basins along the margin of continental plateaus often preserve strata that contain fundamental information regarding the pattern of orogenic growth. The sedimentary record of the elastic Miocene-Pliocene sequence deposited in the Fiambala Basin, at the southern margin of the Puna Plateau (NW Argentina), documents the late Miocene paleodrainage evolution from headwaters to the west, towards headwaters in the ranges that constitute the border of the Puna Plateau to the north. Apatite Fission track (AFT) thermochronology of sedimentary and basement rocks show that the southern Puna Plateau was the source for the youngest, middle Miocene, detrital population detected in late Miocene rocks; and that the margin of the Puna Plateau expressed a high relief, possibly similar to or higher than at present, by late Miocene time. Cooling ages obtained from basement rocks at the southern Puna margin suggest that exhumation started in the Oligocene and continued until the middle Miocene. We interpret the basin reorganization and the creation of a high relief plateau margin to be the direct response of the source-basin system to a wholesale surface uplift event that may have occurred during the late Cenozoic in the Puna-Altiplano region. At this time coeval paleodrainage reorganization is observed not only in the Fiambala Basin, but also in different basins along the southern and eastern Puna margin, suggesting a genetic link between the last stage of plateau formation and basin response. However, this event did not cause sufficient exhumation of basin bounding ranges to be recorded by AFT thermochronology. Our new data thus document a decoupling between late Cenozoic surface uplift and exhumation in the southern Puna Plateau. High relief achieved at the Puna margin by late Miocene time is linked to Oligocene-Miocene exhumation; no significant erosion (< 3 km) has occurred since in this and highland.}, language = {en} } @article{ThiedeArrowsmithBookhagenetal.2006, author = {Thiede, Rasmus Christoph and Arrowsmith, J. Ram{\´o}n and Bookhagen, Bodo and McWilliams, Michael O. and Sobel, Edward and Strecker, Manfred}, title = {Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India}, doi = {10.1130/B25872.1}, year = {2006}, abstract = {Metamorphic dome complexes occur within the internal structures of the northern Himalaya and southern Tibet. Their origin, deformation, and fault displacement patterns are poorly constrained. We report new field mapping, structural data, and cooling ages from the western flank of the Leo Pargil dome in the northwestern Himalaya in an attempt to characterize its post-middle Miocene structural development. The western flank of the dome is characterized by shallow, west-dipping pervasive foliation and WNW-ESE mineral lineation. Shear-sense indicators demonstrate that it is affected by east-west normal faulting that facilitated exhumation of high-grade metamorphic rocks in a contractional setting. Sustained top-to-northwest normal faulting during exhumation is observed in a progressive transition from ductile to brittle deformation. Garnet and kyanite indicate that the Leo Pargil dome was exhumed from the mid-crust. Ar- 40/Ar-39 mica and apatite fission track (AFT) ages constrain cooling and exhumation pathways front 350 to 60 degrees C and suggest that the dome cooled in three stages since the middle Miocene. Ar-40/Ar-39 white mica ages of 16-14 Ma suggest a first phase of rapid cooling and provide minimum estimates for the onset of dome exhumation. AFT ages between 10 and 8 Ma suggest that ductile fault displacement had ceased by then, and AFT track-length data from high-elevation samples indicate that the rate of cooling had decreased significantly. We interpret this to indicate decreased fault displacement along the Leo Pargil shear zone and possibly a transition to the Kaurik-Chango normal fault system between 10 and 6 Ma. AFT ages from lower elevations indicate accelerated cooling since the Pliocene that cannot be related to pure fault displacement, and therefore may reflect more pronounced regionally distributed and erosion-driven exhumation}, language = {en} } @article{ThiedeBookhagenArrowsmithetal.2004, author = {Thiede, Rasmus Christoph and Bookhagen, Bodo and Arrowsmith, J. Ram{\´o}n and Sobel, Edward and Strecker, Manfred}, title = {Climatic control on rapid exhumation along the Southern Himalayan Front}, issn = {0012-821X}, year = {2004}, abstract = {Along the Southern Himalayan Front (SHF), areas with concentrated precipitation coincide with rapid exhumation, as indicated by young mineral cooling ages. Twenty new, young ( < 1-5 Ma) apatite fission track (AFT) ages have been obtained from the Himalayan Crystalline Core along the Sutlej Valley, NW India. The AFT ages correlate with elevation, but show no spatial relationship to tectonic structures, such as the Main Central Thrust or the Southern Tibetan Fault System. Monsoonal precipitation in this region exerts a strong influence on erosional surface processes. Fluvial erosional unloading along the SHF is focused on high mountainous areas, where the orographic barrier forces out > 80\% of the annual precipitation. AFT cooling ages reveal a coincidence between rapid erosion and exhumation that is focused in a similar to 50-70-km-wide sector of the Himalaya, rather than encompassing the entire orogen. Assuming simplified constant exhumation rates, the rocks of two age vs. elevation transects were exhumed at similar to 1.4 +/- 0.2 and similar to 1.1 +/- 0.4 mm/a with an average cooling rate of similar to 40-50degreesC/Ma during Pliocene-Quarternary time. Following other recently published hypotheses regarding the relation between tectonics and climate in the Himalaya, we suggest that this concentrated loss of material was accommodated by motion along a back-stepping thrust to the south and a normal fault zone to the north as part of an extruding wedge. Climatically controlled erosional processes focus on this wedge and suggest that climatically controlled surface processes determine tectonic deformation in the internal part of the Himalaya. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{CarrapaAdelmannHilleyetal.2005, author = {Carrapa, Barbara and Adelmann, Dirk and Hilley, G. E. and Mortimer, Estelle and Sobel, Edward and Strecker, Manfred}, title = {Oligocene range uplift and development of plateau morphology in the southern central Andes}, year = {2005}, abstract = {[1] The Puna-Altiplano plateau in South America is a high-elevation, low internal relief landform that is characterized by internal drainage and hyperaridity. Thermochronologic and sedimentologic observations from the Sierra de Calalaste region in the southwestern Puna plateau, Argentina, place new constraints on early plateau evolution by resolving the timing of uplift of mountain ranges that bound present-day basins and the filling pattern of these basins during late Eocene-Miocene time. Paleocurrent indicators, sedimentary provenance analyses, and apatite fission track thermochronology indicate that the original paleodrainage setting was disrupted by exhumation and uplift of the Sierra de Calalaste range between 24 and 29 Ma. This event was responsible for basin reorganization and the disruption of the regional fluvial system that has ultimately led to the formation of internal drainage conditions, which, in the Salar de Antofalla, were established not later than late Miocene. Upper Eocene-Oligocene sedimentary rocks flanking the range contain features that suggest an arid environment existed prior to and during its uplift. Provenance data indicate a common similar source located to the west for both the southern Puna and the Altiplano of Bolivia during the late Eocene- Oligocene with sporadic local sources. This suggests the existence of an extensive, longitudinally oriented foreland basin along the central Andes during this time}, language = {en} } @article{ThiedeArrowsmithBookhagenetal.2005, author = {Thiede, Rasmus Christoph and Arrowsmith, J. Ram{\´o}n and Bookhagen, Bodo and McWilliams, Michael O. and Sobel, Edward and Strecker, Manfred}, title = {From tectonically to erosionally controlled development of the Himalayan orogen}, issn = {0091-7613}, year = {2005}, abstract = {Whether variations in the spatial distribution of erosion influence the location, style, and magnitude of deformation within the Himalayan orogen is a matter of debate. We report new Ar-40/Ar-39 white mica and apatite fission- track (AFT) ages that measure the vertical component of exhumation rates along an similar to 120-km-wide NE-SW transect spanning the greater Sutlej region of northwest India. The Ar-40/Ar-39 data indicate that first the High Himalayan Crystalline units cooled below their closing temperature during the early to middle Miocene. Subsequently, Lesser Himalayan Crystalline nappes cooled rapidly, indicating southward propagation of the orogen during late Miocene to Pliocene time. The AFT data, in contrast, imply synchronous exhumation of a NE-SW-oriented similar to 80 x 40 km region spanning both crystalline nappes during the Pliocene-Quaternary. The locus of pronounced exhumation defined by the AFT data correlates with a region of high precipitation, discharge, and sediment flux rates during the Holocene. This correlation suggests that although tectonic processes exerted the dominant control on the denudation pattern before and until the middle Miocene; erosion may have been the most important factor since the Pliocene}, language = {en} } @article{SchoenbohmChenStutzetal.2014, author = {Schoenbohm, Lindsay M. and Chen, Jie and Stutz, Jamey and Sobel, Edward and Thiede, Rasmus Christoph and Kirby, Benjamin and Strecker, Manfred}, title = {Glacial morphology in the Chinese Pamir: Connections among climate, erosion, topography, lithology and exhumation}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {221}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2014.05.023}, pages = {1 -- 17}, year = {2014}, abstract = {Modification of the landscape by glacial erosion reflects the dynamic interplay of climate through temperature, precipitation, and prevailing wind direction, and tectonics through rock uplift and exhumation rate, lithology, and range and fault geometry. We investigate these relationships in the northeast Pamir Mountains using mapping and dating of moraines and terraces to determine the glacial history. We analyze modem glacial morphology to determine glacier area, spacing, headwall relief, debris cover, and equilibrium line altitude (ELA) using the area x altitude balance ratio (AABR), toe-to-headwall altitude ratio (THAR) and toe-to-summit altitude method (TSAM) for 156 glaciers and compare this to lithologic, tectonic, and climatic data We observe a pronounced asymmetry in glacial ELA, area, debris cover, and headwall relief that we interpret to reflect both structural and climatic control: glaciers on the downwind (eastern) side of the range are larger, more debris covered, have steeper headwalls, and tend to erode headward, truncating the smaller glaciers of the upwind, fault-controlled side of the range. We explain this by the transfer of moisture deep into the range as wind-blown or avalanched snow and by limitations imposed on glacial area on the upwind side of the range by the geometry of the Kongur extensional system (KES). The correspondence between rapid exhumation along the KES and maxima in glacier debris cover and headwall relief and minimums in all measures of ELA suggest that taller glacier headwalls develop in a response to more rapid exhumation rates. However, we find that glaciers in the Muji valley did not extend beyond the range front until at least 43 ka, in contrast to extensive glaciation since 300 ka in the south around the high peaks, a pattern which does not clearly reflect uplift rate. Instead, the difference in glacial history and the presence of large peaks (Muztagh Ata and Kongur Shan) with flanking glaciers likely reflects lithologic control (i.e., the location of crustal gneiss domes) and the formation of peaks that rise above the ELA and escape the glacial buzzsaw. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} }