@phdthesis{Olonscheck2016, author = {Olonscheck, Mady}, title = {Climate change impacts on electricity and residential energy demand}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98378}, school = {Universit{\"a}t Potsdam}, pages = {XXIV, 127}, year = {2016}, abstract = {The energy sector is both affected by climate change and a key sector for climate protection measures. Energy security is the backbone of our modern society and guarantees the functioning of most critical infrastructure. Thus, decision makers and energy suppliers of different countries should be familiar with the factors that increase or decrease the susceptibility of their electricity sector to climate change. Susceptibility means socioeconomic and structural characteristics of the electricity sector that affect the demand for and supply of electricity under climate change. Moreover, the relevant stakeholders are supposed to know whether the given national energy and climate targets are feasible and what needs to be done in order to meet these targets. In this regard, a focus should be on the residential building sector as it is one of the largest energy consumers and therefore emitters of anthropogenic CO 2 worldwide. This dissertation addresses the first aspect, namely the susceptibility of the electricity sector, by developing a ranked index which allows for quantitative comparison of the electricity sector susceptibility of 21 European countries based on 14 influencing factors. Such a ranking has not been completed to date. We applied a sensitivity analysis to test the relative effect of each influencing factor on the susceptibility index ranking. We also discuss reasons for the ranking position and thus the susceptibility of selected countries. The second objective, namely the impact of climate change on the energy demand of buildings, is tackled by means of a new model with which the heating and cooling energy demand of residential buildings can be estimated. We exemplarily applied the model to Germany and the Netherlands. It considers projections of future changes in population, climate and the insulation standards of buildings, whereas most of the existing studies only take into account fewer than three different factors that influence the future energy demand of buildings. Furthermore, we developed a comprehensive retrofitting algorithm with which the total residential building stock can be modeled for the first time for each year in the past and future. The study confirms that there is no correlation between the geographical location of a country and its position in the electricity sector susceptibility ranking. Moreover, we found no pronounced pattern of susceptibility influencing factors between countries that ranked higher or lower in the index. We illustrate that Luxembourg, Greece, Slovakia and Italy are the countries with the highest electricity sector susceptibility. The electricity sectors of Norway, the Czech Republic, Portugal and Denmark were found to be least susceptible to climate change. Knowledge about the most important factors for the poor and good ranking positions of these countries is crucial for finding adequate adaptation measures to reduce the susceptibility of the electricity sector. Therefore, these factors are described within this study. We show that the heating energy demand of residential buildings will strongly decrease in both Germany and the Netherlands in the future. The analysis for the Netherlands focused on the regional level and a finer temporal resolution which revealed strong variations in the future heating energy demand changes by province and by month. In the German study, we additionally investigated the future cooling energy demand and could demonstrate that it will only slightly increase up to the middle of this century. Thus, increases in the cooling energy demand are not expected to offset reductions in heating energy demand. The main factor for substantial heating energy demand reductions is the retrofitting of buildings. We are the first to show that the given German and Dutch energy and climate targets in the building sector can only be met if the annual retrofitting rates are substantially increased. The current rate of only about 1 \% of the total building stock per year is insufficient for reaching a nearly zero-energy demand of all residential buildings by the middle of this century. To reach this target, it would need to be at least tripled. To sum up, this thesis emphasizes that country-specific characteristics are decisive for the electricity sector susceptibility of European countries. It also shows for different scenarios how much energy is needed in the future to heat and cool residential buildings. With this information, existing climate mitigation and adaptation measures can be justified or new actions encouraged.}, language = {en} } @article{KleinOlonscheckWaltheretal.2013, author = {Klein, Daniel R. and Olonscheck, Mady and Walther, Carsten and Kropp, J{\"u}rgen}, title = {Susceptibility of the European electricity sector to climate change}, series = {Energy}, volume = {59}, journal = {Energy}, number = {6}, publisher = {Elsevier}, address = {Oxford}, issn = {0360-5442}, doi = {10.1016/j.energy.2013.06.048}, pages = {183 -- 193}, year = {2013}, abstract = {The electricity system is particularly susceptible to climate change due to the close interconnectedness between electricity production, consumption and climate. This study provides a country based relative analysis of 21 European countries' electricity system susceptibility to climate change. Taking into account 14 quantitative influencing factors, the susceptibility of each country is examined both for the current and projected system with the result being a relative ranked index. Luxembourg and Greece are the most susceptible relatively due in part to their inability to meet their own electricity consumption demand with inland production, and the fact that the majority of their production is from more susceptible sources, primarily combustible fuels. Greece experiences relatively warm mean temperatures, which are expected to increase in the future leading to greater summer electricity consumption, increasing susceptibility. Norway was found to be the least susceptible, relatively, due to its consistent production surplus, which is primarily from hydro (a less susceptible source) and a likely decrease of winter electricity consumption as temperatures rise due to climate change. The findings of this study enable countries to identify the main factors that increase their electricity system susceptibility and proceed with adaptation measures that are the most effective in decreasing susceptibility.}, language = {en} } @article{OlonscheckWaltherLuedekeetal.2015, author = {Olonscheck, Mady and Walther, Carsten and L{\"u}deke, Matthias K. B. and Kropp, J{\"u}rgen}, title = {Feasibility of energy reduction targets under climate change: The case of the residential heating energy sector of the Netherlands}, series = {Energy}, volume = {90}, journal = {Energy}, publisher = {Elsevier}, address = {Oxford}, issn = {0360-5442}, doi = {10.1016/j.energy.2015.07.080}, pages = {560 -- 569}, year = {2015}, abstract = {In order to achieve meaningful climate protection targets at the global scale, each country is called to set national energy policies aimed at reducing energy consumption and carbon emissions. By calculating the monthly heating energy demand of dwellings in the Netherlands, our case study country, we contrast the results with the corresponding aspired national targets. Considering different future population scenarios, renovation measures and temperature variations, we show that a near zero energy demand in 2050 could only be reached with very ambitious renovation measures. While the goal of reducing the energy demand of the building sector by 50\% until 2030 compared to 1990 seems feasible for most provinces and months in the minimum scenario, it is impossible in our scenario with more pessimistic yet still realistic assumptions regarding future developments. Compared to the current value, the annual renovation rate per province would need to be at least doubled in order to reach the 2030 target independent of reasonable climatic and population changes in the future. Our findings also underline the importance of policy measures as the annual renovation rate is a key influencing factor regarding the reduction of the heating energy demand in dwellings. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} }