@article{HobigerCornouWatheletetal.2013, author = {Hobiger, M. and Cornou, C. and Wathelet, M. and Di Giulio, G. and Knapmeyer-Endrun, B. and Renalier, F. and Bard, Pierre-Yves and Savvaidis, Alexandros and Hailemikael, S. and Le Bihan, N. and Ohrnberger, Matthias and Theodoulidis, N.}, title = {Ground structure imaging by inversions of Rayleigh wave ellipticity sensitivity analysis and application to European strong-motion sites}, series = {Geophysical journal international}, volume = {192}, journal = {Geophysical journal international}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggs005}, pages = {207 -- 229}, year = {2013}, abstract = {The knowledge of the local soil structure is important for the assessment of seismic hazards. A widespread, but time-consuming technique to retrieve the parameters of the local underground is the drilling of boreholes. Another way to obtain the shear wave velocity profile at a given location is the inversion of surface wave dispersion curves. To ensure a good resolution for both superficial and deeper layers, the used dispersion curves need to cover a wide frequency range. This wide frequency range can be obtained using several arrays of seismic sensors or a single array comprising a large number of sensors. Consequently, these measurements are time-consuming. A simpler alternative is provided by the use of the ellipticity of Rayleigh waves. The frequency dependence of the ellipticity is tightly linked to the shear wave velocity profile. Furthermore, it can be measured using a single seismic sensor. As soil structures obtained by scaling of a given model exhibit the same ellipticity curve, any inversion of the ellipticity curve alone will be ambiguous. Therefore, additional measurements which fix the absolute value of the shear wave velocity profile at some points have to be included in the inversion process. Small-scale spatial autocorrelation measurements or MASW measurements can provide the needed data. Using a theoretical soil structure, we show which parts of the ellipticity curve have to be included in the inversion process to get a reliable result and which parts can be omitted. Furthermore, the use of autocorrelation or high-frequency dispersion curves will be highlighted. The resulting guidelines for inversions including ellipticity data are then applied to real data measurements collected at 14 different sites during the European NERIES project. It is found that the results are in good agreement with dispersion curve measurements. Furthermore, the method can help in identifying the mode of Rayleigh waves in dispersion curve measurements.}, language = {en} } @article{WatheletJongmansOhrnberger2005, author = {Wathelet, M. and Jongmans, D. and Ohrnberger, Matthias}, title = {Direct inversion of spatial autocorrelation curves with the neighborhood algorithm}, issn = {0037-1106}, year = {2005}, abstract = {Ambient vibration techniques are promising methods for assessing the subsurface structure, in particular the shear-wave velocity profile (V-s). They are based on the dispersion property of surface waves in layered media. Therefore, the penetration depth is intrinsically linked to the energy content of the sources. For ambient vibrations, the spectral content extends in general to lower frequency when compared to classical artificial sources. Among available methods for processing recorded signals, we focus here on the spatial autocorrelation method. For stationary wavefields, the spatial autocorrelation is mathematically related to the frequency-dependent wave velocity c(omega). This allows the determination of the dispersion curve of traveling surface waves, which, in turn, is linked to the V-s profile. Here, we propose a direct inversion scheme for the observed autocorrelation curves to retrieve, in a single step, the V-s profile. The powerful neighborhood algorithm is used to efficiently search for all solutions in an n- dimensional parameter space. This approach has the advantage of taking into account the existing uncertainty over the measured curves, thus generating all V-s profiles that fit the data within their experimental errors. A preprocessing tool is also developed to estimate the validity of the autocorrelation curves and to reject parts of them if necessary before starting the inversion itself. We present two synthetic cases to test the potential of the method: one with ideal autocorrelation curves and another with autocorrelation curves computed from simulated ambient vibrations. The latter case is more realistic and makes it possible to figure out the problems that may be encountered in real experiments. The V-s profiles are correctly retrieved up to the depth of the first major velocity contrast unless low-velocity zones are accepted. We demonstrate that accepting low-velocity zones in the parameterization has a dramatic influence on the result of the inversion, with a considerable increase in the nonuniqueness of the problem. Finally, a real data set is processed with the same method}, language = {en} }