@article{GhoshDePoyGalYametal.2004, author = {Ghosh, H. and DePoy, D. L. and Gal-Yam, A. and Gaudi, B. S. and Gould, A. and Han, C. and Lipkin, Y. and Maoz, D. and Ofek, E. O. and Park, B. G. and Pogge, R. W. and Salim, S. and Abe, Fumio and Bennett, David P. and Bond, I. A. and Eguchi, S. and Furuta, Y. and Hearnshaw, John B. and Kamiya, K. and Kilmartin, Pam M. and Kurata, Y. and Masuda, Kimiaki and Matsubara, Yutaka and Muraki, Y. and Noda, S. and Okajima, K. and Rattenbury, N. J. and Sako, T. and Sekiguchi, T. and Sullivan, D. J. and Sumi, T. and Tristram, P. J. and Yanagisawa, T. and Yock, P. C. M. and Udalski, A. and Soszynski, I. and Wyrzykowski, X. and Kubiak, Marcin and Szymanski, M. K. and Pietrzynski, G. and Szewczyk, O. and Zebru,}, title = {Potential direct single-star mass measurement}, issn = {0004-637X}, year = {2004}, abstract = {We analyze the light curve of the microlensing event OGLE-2003-BLG-175/MOA-2003-BLG-45 and show that it has two properties that, when combined with future high-resolution astrometry, could lead to a direct, accurate measurement of the lens mass. First, the light curve shows clear signs of distortion due to the Earth's accelerated motion, which yields a measurement of the projected Einstein radius (r) over tilde (E). Second, from precise astrometric measurements, we show that the blended light in the event is coincident with the microlensed source to within about 15 mas. This argues strongly that this blended light is the lens and hence opens the possibility of directly measuring the lens- source relative proper motion mu(rel) and so the mass M=(c(2)/4G)mu(rel)t(E)(r) over tilde (E), where t(E) is the measured Einstein timescale. While the light-curve-based measurement of (r) over tildeE is, by itself, severely degenerate, we show that this degeneracy can be completely resolved by measuring the direction of proper motion mu(rel)}, language = {en} } @article{JiangDePoyGalYametal.2004, author = {Jiang, G. F. and DePoy, D. L. and Gal-Yam, A. and Gaudi, B. S. and Gould, A. and Han, C. and Lipkin, Y. and Maoz, D. and Ofek, E. O. and Park, B. G. and Pogge, R. W. and Udalski, A. and Kubiak, Marcin and Szymanski, M. K. and Szewczyk, O. and Zerbrun, K. and Wyrzykowski, L. and Soszynski, I. and Pietrzynski, G. and Albrow, Michael D. and Beaulieu, Jean-Philippe and Caldwell, John A. R. and Cassan, A. and Coutures, C. and Dominik, M. and Donatowicz, J. and Fouque, P. and Greenhill, John and Hill, K. and Horne, Keith and Jorgensen, S. F. and Jorgensen, Uffe Grae and Kane, Stephen R. and Kubas, Daniel and Martin, Ralph and Menzies, J. W. and Pollard, R. and Sahu, K. C. and Wambsganss, Joachim and Watson, R. and Williams, A.}, title = {OGLE-2003-BLG-238 : Microlensing mass estimate of an isolated star}, issn = {0004-637X}, year = {2004}, abstract = {Microlensing is the only known direct method to measure the masses of stars that lack visible companions. In terms of microlensing observables, the mass is given by M (c(2)/4G)(r) over tilde (E)theta(E) and so requires the measurement of both the angular Einstein radius theta(E) and the projected Einstein radius (r) over tilde (E). Simultaneous measurement of these two parameters is extremely rare. Here we analyze OGLE-2003-BLG-238, a spectacularly bright (I-min 10.3), high-magnification (A(max) 170) microlensing event. Pronounced finite-source effects permit a measurement of theta(E) = 650 muas. Although the timescale of the event is only t(E) 38 days, one can still obtain weak constraints on the microlens parallax: 4.4 AU < <(r)over tilde>(E) < 18 AU at the 1 \σ level. Together these two parameter measurements yield a range for the lens mass of 0.36 M-\&ODOT; < M < 1.48 M-\&ODOT;. As was the case for MACHO- LMC-5, the only other single star (apart from the Sun) whose mass has been determined from its gravitational effects, this estimate is rather crude. It does, however, demonstrate the viability of the technique. We also discuss future prospects for single-lens mass measurements}, language = {en} } @article{CharpinetBrassardFontaineetal.2019, author = {Charpinet, St{\´e}phane and Brassard, P. and Fontaine, G. and Van Grootel, Valerie and Zong, Weika and Giammichele, N. and Heber, Ulrich and Bogn{\´a}r, Zs{\´o}fia and Geier, Stephan and Green, Elizabeth M. and Hermes, J. J. and Kilkenny, D. and Ostensen, R. H. and Pelisoli, Ingrid Domingos and Silvotti, R. and Telting, J. H. and Vuckovic, Maja and Worters, H. L. and Baran, Andrzej S. and Bell, Keaton J. and Bradley, Paul A. and Debes, J. H. and Kawaler, S. D. and Kolaczek-Szymanski, P. and Murphy, S. J. and Pigulski, A. and Sodor, A. and Uzundag, Murat and Handberg, R. and Kjeldsen, H. and Ricker, G. R. and Vanderspek, R. K.}, title = {TESS first look at evolved compact pulsators Discovery and asteroseismic probing of the g-mode hot B subdwarf pulsator EC 21494-7018}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {632}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201935395}, pages = {23}, year = {2019}, abstract = {Context. The TESS satellite was launched in 2018 to perform high-precision photometry from space over almost the whole sky in a search for exoplanets orbiting bright stars. This instrument has opened new opportunities to study variable hot subdwarfs, white dwarfs, and related compact objects. Targets of interest include white dwarf and hot subdwarf pulsators, both carrying high potential for asteroseismology. Aims. We present the discovery and detailed asteroseismic analysis of a new g-mode hot B subdwarf (sdB) pulsator, EC 21494-7018 (TIC 278659026), monitored in TESS first sector using 120-s cadence. Methods. The TESS light curve was analyzed with standard prewhitening techniques, followed by forward modeling using our latest generation of sdB models developed for asteroseismic investigations. By simultaneously best-matching all the observed frequencies with those computed from models, we identified the pulsation modes detected and, more importantly, we determined the global parameters and structural configuration of the star. Results. The light curve analysis reveals that EC 21494-7018 is a sdB pulsator counting up to 20 frequencies associated with independent g-modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluated from Gaia DR2 trigonometric parallax). Several key parameters of the star are derived. Its mass (0.391 +/- 0.009x2006;M-circle dot) is significantly lower than the typical mass of sdB stars and suggests that its progenitor has not undergone the He-core flash; therefore this progenitor could originate from a massive (greater than or similar to 2;M-circle dot) red giant, which is an alternative channel for the formation of sdBs. Other derived parameters include the H-rich envelope mass (0.0037 +/- 0.0010;M-circle dot), radius (0.1694 +/- 0.0081;R-circle dot), and luminosity (8.2 +/- 1.1;L-circle dot). The optimal model fit has a double-layered He+H composition profile, which we interpret as an incomplete but ongoing process of gravitational settling of helium at the bottom of a thick H-rich envelope. Moreover, the derived properties of the core indicate that EC 21494-7018 has burnt similar to 43\% (in mass) of its central helium and possesses a relatively large mixed core (M-core;=;0.198 +/- 0.010;M-circle dot), in line with trends already uncovered from other g-mode sdB pulsators analyzed with asteroseismology. Finally, we obtain for the first time an estimate of the amount of oxygen (in mass; X(O)(core) = 0.16(-0.05)(+0.13)X(O)core=0.16-0.05+0.13\$ X(mathrm{O})_{mathrm{core}}=0.16_{-0.05}<^>{+0.13} \$) produced at this stage of evolution by an helium-burning core. This result, along with the core-size estimate, is an interesting constraint that may help to narrow down the still uncertain C-12(alpha,;gamma)O-16 nuclear reaction rate.}, language = {en} }