@article{RullensDeligneLaschewskyetal.2005, author = {Rullens, F. and Deligne, N. and Laschewsky, Andr{\´e} and Devillers, M.}, title = {A facile precursor route to transition metal molybdates using a polyzwitterionic matrix bearing simultaneously charged moieties and complexing groups}, issn = {0959-9428}, year = {2005}, abstract = {An unconventional but easily accessible precursor route involving the thermal treatment of hybrid precursors containing an ampholytic polymer matrix is developed to prepare multimetallic oxides of catalytic interest such as transition metal molybdates. A copolymer of diallyldimethylammonium chloride and a functionalized maleamic acid bearing an amine group suited for cation complexation was designed, synthesized and used as a matrix to stabilize inorganic species generated in solution from Ni(NO3)(2)center dot 6H(2)O, Co(NO3)(2)center dot 6H(2)O and/or Mn(NO3)(2)center dot 4H(2)O together with (NH4)(6)Mo(7)O(24)center dot 4H(2)O. UV-vis-NIR as well as C-13-NMR studies suggest that the interactions between the cations and the polymer in solution are mainly electrostatic. Only minor complexation interactions take place under certain conditions. Homogeneous hybrid blends were prepared from these solutions. The presence of a complexing amine group in addition to the charged betaine moieties in the polymer permits stabilization of more than stoichiometric amounts of the metal species in the blends. XRD measurements suggest that the homogeneity in the solid state can be kept up to about 1.5 mol of each metal that is incorporated ( anionic as well as cationic) per mol of repeat units of the copolymer. The blends were calcined under air at 600 degrees C to produce the simple as well as mixed nickel, cobalt and manganese molybdates. Characterization of the final phases by XRD and Raman spectroscopy indicates that the alpha- as well as the beta-molybdate phases can be prepared, and that the mixed structures are solid solutions of the simple NiMoO4, MnMoO4 and CoMoO4. If the precursors engaged are homogeneous, the pH of the precursor solution, the amount of metal that is incorporated in the matrix, and the nature of the polymer matrix seem to exert only a minor influence on the nature of the final phase, which demonstrates the versatility and facile applicability of the method}, language = {en} } @article{RullensDevillersLaschewsky2004, author = {Rullens, F. and Devillers, M. and Laschewsky, Andr{\´e}}, title = {New regular, amphiphilic poly(ampholyte)s : synthesis and characterization}, year = {2004}, abstract = {Hydrophobically substituted diallylamines bearing a hexyl, dodecyl, or octadecyl chain were synthesized and homopolymerized as hydrochlorides. Copolymerixation of the diallylamines with maleic acid produces alternating copolymers. The copolymers behave as amphiphilic polyampholytes and dissolve best in the acidic or in the basic form. Only the colpolymer with the hexyl chain could be dissolved in aqueous solvents and shows hydrophobic associaiton. The copolymers with the longer alkyl chains require polar protic organic solvents. All polymers are amorphous, but show a superstructure in bulk due to their amphiphilicity}, language = {en} } @article{RullensLaschewskyDevillers2006, author = {Rullens, F and Laschewsky, Andr{\´e} and Devillers, M}, title = {Bulk and thin films of bismuth vanadates prepared from hybrid materials made from an organic polymer and inorganic salts}, doi = {10.1021/Cm051516q}, year = {2006}, abstract = {A new precursor route for the preparation of bulk oxides and thin films of bismuth vanadates is proposed. The method involves the thermal treatment under air and mild conditions of hybrid organic-inorganic precursors, made from a zwitterionic salt-free polymer matrix and selected inorganic species. Monoclinic BiVO4 was obtained in the form of bulk oxide by calcination of the powdered homogeneous hybrid materials at 600 degrees C, from precursors containing Bi and V in stoichiometric amounts. In the same way, thermodiffractometry studies performed on a hybrid material exhibiting a Bi/ V molar ratio of 2 revealed that the ionic conductor gamma-Bi4V2O11 phase can be stabilized under very soft thermal conditions (300 degrees C). Additionally, thin films of yellow monoclinic BiVO4 were for the first time fabricated, by thermal treatment of the same hybrid polymeric precursors deposited on quartz substrates by spin coating, using a layer- by-layer technique. The presence of the target phase at the surface of the plates was confirmed by X-ray diffraction as well as UV-vis measurements}, language = {en} }