@article{RaufArifDortayetal.2013, author = {Rauf, Mamoona and Arif, Muhammad and Dortay, Hakan and Matallana-Ramirez, Lilian P. and Waters, Mark T. and Nam, Hong Gil and Lim, Pyung-Ok and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {ORE1 balances leaf senescence against maintenance by antagonizing G2-like-mediated transcription}, series = {EMBO reports}, volume = {14}, journal = {EMBO reports}, number = {4}, publisher = {Nature Publ. Group}, address = {London}, issn = {1469-221X}, doi = {10.1038/embor.2013.24}, pages = {382 -- 388}, year = {2013}, abstract = {Leaf senescence is a key physiological process in all plants. Its onset is tightly controlled by transcription factors, of which NAC factor ORE1 (ANAC092) is crucial in Arabidopsis thaliana. Enhanced expression of ORE1 triggers early senescence by controlling a downstream gene network that includes various senescence-associated genes. Here, we report that unexpectedly ORE1 interacts with the G2-like transcription factors GLK1 and GLK2, which are important for chloroplast development and maintenance, and thereby for leaf maintenance. ORE1 antagonizes GLK transcriptional activity, shifting the balance from chloroplast maintenance towards deterioration. Our finding identifies a new mechanism important for the control of senescence by ORE1.}, language = {en} } @article{ReadKegelKluteetal.2013, author = {Read, Betsy A. and Kegel, Jessica and Klute, Mary J. and Kuo, Alan and Lefebvre, Stephane C. and Maumus, Florian and Mayer, Christoph and Miller, John and Monier, Adam and Salamov, Asaf and Young, Jeremy and Aguilar, Maria and Claverie, Jean-Michel and Frickenhaus, Stephan and Gonzalez, Karina and Herman, Emily K. and Lin, Yao-Cheng and Napier, Johnathan and Ogata, Hiroyuki and Sarno, Analissa F. and Shmutz, Jeremy and Schroeder, Declan and de Vargas, Colomban and Verret, Frederic and von Dassow, Peter and Valentin, Klaus and Van de Peer, Yves and Wheeler, Glen and Dacks, Joel B. and Delwiche, Charles F. and Dyhrman, Sonya T. and Gl{\"o}ckner, Gernot and John, Uwe and Richards, Thomas and Worden, Alexandra Z. and Zhang, Xiaoyu and Grigoriev, Igor V. and Allen, Andrew E. and Bidle, Kay and Borodovsky, M. and Bowler, C. and Brownlee, Colin and Cock, J. Mark and Elias, Marek and Gladyshev, Vadim N. and Groth, Marco and Guda, Chittibabu and Hadaegh, Ahmad and Iglesias-Rodriguez, Maria Debora and Jenkins, J. and Jones, Bethan M. and Lawson, Tracy and Leese, Florian and Lindquist, Erika and Lobanov, Alexei and Lomsadze, Alexandre and Malik, Shehre-Banoo and Marsh, Mary E. and Mackinder, Luke and Mock, Thomas and M{\"u}ller-R{\"o}ber, Bernd and Pagarete, Antonio and Parker, Micaela and Probert, Ian and Quesneville, Hadi and Raines, Christine and Rensing, Stefan A. and Riano-Pachon, Diego Mauricio and Richier, Sophie and Rokitta, Sebastian and Shiraiwa, Yoshihiro and Soanes, Darren M. and van der Giezen, Mark and Wahlund, Thomas M. and Williams, Bryony and Wilson, Willie and Wolfe, Gordon and Wurch, Louie L.}, title = {Pan genome of the phytoplankton Emiliania underpins its global distribution}, series = {Nature : the international weekly journal of science}, volume = {499}, journal = {Nature : the international weekly journal of science}, number = {7457}, publisher = {Nature Publ. Group}, address = {London}, organization = {Emiliania Huxleyi Annotation}, issn = {0028-0836}, doi = {10.1038/nature12221}, pages = {209 -- 213}, year = {2013}, abstract = {Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.}, language = {en} } @article{SeuffertWintzheimerOppmannetal.2020, author = {Seuffert, Marcel T. and Wintzheimer, Susanne and Oppmann, Maximilian and Granath, Tim and Prieschl, Johannes and Alrefai, Anas and Holdt, Hans-J{\"u}rgen and M{\"u}ller-Buschbaum, Klaus and Mandel, Karl}, title = {An all white magnet by combination of electronic properties of a white light emitting MOF with strong magnetic particle systems}, series = {Journal of materials chemistry : C, Materials for optical and electronic devices}, volume = {8}, journal = {Journal of materials chemistry : C, Materials for optical and electronic devices}, number = {45}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7526}, doi = {10.1039/d0tc03473h}, pages = {16010 -- 16017}, year = {2020}, abstract = {A multi-component particle system was developed that combines the properties of white color, white light emission and strong magnetism on the macroscopic and microscopic scale. The system is constituted by combination of an inorganic white core with either hard or soft magnetic properties and a white light emitting MOF. The key towards this achievement is the supraparticulate character constituted by a magnetic core, of either magnetite or alpha-Fe, surrounded by titania and silica nanoparticles of a certain size in a loose structural shell-arrangement as white components and finally the white light emitting metal-organic framework (MOF) EuTb@IFP-1 as building blocks of a core-shell structure. The supraparticles are created by forced assembly of the inorganic compounds and by combining spray-drying and postsynthetic modification by solvothermal chemistry. Thereby, the gap is bridged that homogenous compounds are either strongly magnetic, white in appearance or white light emitting. The composites presented herein inherit these properties intrinsically as electronic properties. The white characteristics are based on all optical properties that enable white: light reflection, refraction, and light emission. This work shifts the paradigm that strong magnetic materials are always expected to be intrinsically dark.}, language = {en} } @article{NeffeLoebusZaupaetal.2011, author = {Neffe, Axel T. and Loebus, Axel and Zaupa, Alessandro and St{\"o}tzel, Christian and M{\"u}ller, Frank A. and Lendlein, Andreas}, title = {Gelatin functionalization with tyrosine derived moieties to increase the interaction with hydroxyapatite fillers}, series = {Acta biomaterialia}, volume = {7}, journal = {Acta biomaterialia}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {1742-7061}, doi = {10.1016/j.actbio.2010.11.025}, pages = {1693 -- 1701}, year = {2011}, abstract = {Combining gelatins functionalized with the tyrosine-derived groups desaminotyrosine or desaminotyrosyl tyrosine with hydroxyapatite (HAp) led to the formation of composite materials with much lower swelling ratios than those of the pure matrices. Shifts of the infra-red (IR) bands related to the free carboxyl groups could be observed in the presence of HAp, which suggested a direct interaction of matrix and filler that formed additional physical cross-links in the material. In tensile tests and rheological measurements the composites equilibrated in water had increased Young's moduli (from 200 kPa up to 2 MPa) and tensile strengths (from 57 kPa up to 1.1 MPa) compared with the matrix polymers without affecting the elongation at break. Furthermore, an increased thermal stability of the networks from 40 to 85 degrees C could be demonstrated. The differences in the behaviour of the functionalized gelatins compared with pure gelatin as a matrix suggested an additional stabilizing bond between the incorporated aromatic groups and the HAp as supported by the IR results. The composites can potentially be applied as bone fillers.}, language = {en} } @article{XieXuWangetal.2022, author = {Xie, Dongjiu and Xu, Yaolin and Wang, Yonglei and Pan, Xuefeng and H{\"a}rk, Eneli and Kochovski, Zdravko and Eljarrat, Alberto and M{\"u}ller, Johannes and Koch, Christoph T. and Yuan, Jiayin and Lu, Yan}, title = {Poly(ionic liquid) nanovesicle-templated carbon nanocapsules functionalized with uniform iron nitride nanoparticles as catalytic sulfur host for Li-S batteries}, series = {ACS nano}, volume = {16}, journal = {ACS nano}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.2c01992}, pages = {10554 -- 10565}, year = {2022}, abstract = {Poly(ionic liquid)s (PIL) are common precursors for heteroatom-doped carbon materials. Despite a relatively higher carbonization yield, the PIL-to-carbon conversion process faces challenges in preserving morphological and structural motifs on the nanoscale. Assisted by a thin polydopamine coating route and ion exchange, imidazoliumbased PIL nanovesicles were successfully applied in morphology-maintaining carbonization to prepare carbon composite nanocapsules. Extending this strategy further to their composites, we demonstrate the synthesis of carbon composite nanocapsules functionalized with iron nitride nanoparticles of an ultrafine, uniform size of 3-5 nm (termed "FexN@C "). Due to its unique nanostructure, the sulfur-loaded FexN@C electrode was tested to efficiently mitigate the notorious shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. The cavity of the carbon nanocapsules was spotted to better the loading content of sulfur. The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electronic conductivity and strong binding power to LiPSs. Benefiting from this well-crafted composite nanostructure, the constructed FexN@C/S cathode demonstrated a fairly high discharge capacity of 1085 mAh g(-1) at 0.5 C initially, and a remaining value of 930 mAh g(-1 )after 200 cycles. In addition, it exhibits an excellent rate capability with a high initial discharge capacity of 889.8 mAh g(-1) at 2 C. This facile PIL-to-nanocarbon synthetic approach is applicable for the exquisite design of complex hybrid carbon nanostructures with potential use in electrochemical energy storage and conversion.}, language = {en} } @inproceedings{LeBehrsingRothschildetal.2021, author = {Le, Dinh To and Behrsing, Olaf and Rothschild, Claire and Radukic, Marco T. and Arndt, Katja and M{\"u}ller, Kristian M.}, title = {AAV capsid proteins fused with SARS-CoV-2 RBD or RBM: Expression in E. coli, in-vitro assembly, and characterization}, series = {Molecular therapy : the journal of the American Society of Gene Therapy}, volume = {29}, booktitle = {Molecular therapy : the journal of the American Society of Gene Therapy}, number = {4, Suppl. 1}, publisher = {Cell Press}, address = {Cambridge}, issn = {1525-0016}, doi = {10.1016/j.ymthe.2021.04.019}, pages = {357 -- 357}, year = {2021}, language = {en} } @article{RotheZhaoMuelleretal.2021, author = {Rothe, Martin and Zhao, Yuhang and M{\"u}ller, Johannes and Kewes, G{\"u}nter and Koch, Christoph T. and Lu, Yan and Benson, Oliver}, title = {Self-assembly of plasmonic nanoantenna-waveguide structures for subdiffractional chiral sensing}, series = {ACS nano}, volume = {15}, journal = {ACS nano}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.0c05240}, pages = {351 -- 361}, year = {2021}, abstract = {Spin-momentum locking is a peculiar effect in the near-field of guided optical or plasmonic modes. It can be utilized to map the spinning or handedness of electromagnetic fields onto the propagation direction. This motivates a method to probe the circular dichroism of an illuminated chiral object. In this work, we demonstrate local, subdiffraction limited chiral coupling of light and propagating surface plasmon polaritons in a self-assembled system of a gold nanoantenna and a silver nanowire. A thin silica shell around the nanowire provides precise distance control and also serves as a host for fluorescent molecules, which indicate the direction of plasmon propagation. We characterize our nanoantenna-nanowire systems comprehensively through correlated electron microscopy, energy-dispersive X-ray spectroscopy, dark-field, and fluorescence imaging. Three-dimensional numerical simulations support the experimental findings. Besides our measurement of far-field polarization, we estimate sensing capabilities and derive not only a sensitivity of 1 mdeg for the ellipticity of the light field, but also find 10(3) deg cm(2)/dmol for the circular dichroism of an analyte locally introduced in the hot spot of the antenna-wire system. Thorough modeling of a prototypical design predicts on-chip sensing of chiral analytes. This introduces our system as an ultracompact sensor for chiral response far below the diffraction limit.}, language = {en} } @article{GeisslerPoyarkovGrismeretal.2015, author = {Geissler, Peter and Poyarkov, Nikolay A. and Grismer, Lee and Nguyen, Truong Q. and An, Hang T. and Neang, Thy and Kupfer, Alexander and Ziegler, Thomas and B{\"o}hme, Wolfgang and M{\"u}ller, Hendrik}, title = {New Ichthyophis species from Indochina (Gymnophiona, Ichthyophiidae): 1. The unstriped forms with descriptions of three new species and the redescriptions of I-acuminatus Taylor, 1960, I-youngorum Taylor, 1960 and I-laosensis Taylor, 1969}, series = {Organisms, diversity \& evolution : official journal of the Gesellschaft f{\"u}r Biologische Systematik}, volume = {15}, journal = {Organisms, diversity \& evolution : official journal of the Gesellschaft f{\"u}r Biologische Systematik}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-6092}, doi = {10.1007/s13127-014-0190-6}, pages = {143 -- 174}, year = {2015}, abstract = {Caecilians of the genus Ichthyophis Fitzinger, 1826 are among the most poorly known amphibian taxa within Southeast Asia. Populations of Ichthyophis from the Indochina region (comprising Cambodia, Laos, and Vietnam) have been assigned to five taxa: Ichthyophis acuminatus, Ichthyophis bannanicus, Ichthyophis kohtaoensis, Ichthyophis laosensis, and Ichthyophis nguyenorum. Barcoding of recently collected specimens indicates that Indochinese congeners form a clade that includes several morphologically and genetically distinct but yet undescribed species. Although body coloration is supported by the molecular analyses as a diagnostic character at species level, unstriped forms are paraphyletic with respect to striped Ichthyophis. Based on our morphological and molecular analyses, three distinct unstriped ichthyophiid species, Ichthyophis cardamomensis sp. nov. from western Cambodia, Ichthyophis catlocensis sp. nov. from southern Vietnam, and Ichthyophis chaloensis sp. nov. from central Vietnam are described as new herein, almost doubling the number of Ichthyophis species known from the Indochinese region. All three new species differ from their unstriped congeners in a combination of morphological and molecular traits. In addition, redescriptions of three unstriped Ichthyophis species (Ichthyophis acuminatus, I. laosensis, I. youngorum) from Indochina and adjacent Thailand are provided.}, language = {en} }