@article{KoenigReschkeWolteretal.2013, author = {K{\"o}nig, Niklas and Reschke, Antje and Wolter, Martin and M{\"u}ller, Steffen and Mayer, Frank and Baur, Heiner}, title = {Plantar pressure trigger for reliable nerve stimulus application during dynamic H-reflex measurements}, series = {Gait \& posture}, volume = {37}, journal = {Gait \& posture}, number = {4}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2012.09.021}, pages = {637 -- 639}, year = {2013}, abstract = {In dynamic H-reflex measurements, the standardisation of the nerve stimulation to the gait cycle is crucial to avoid misinterpretation due to altered pre-synaptic inhibition. In this pilot study, a plantar pressure sole was used to trigger the stimulation of the tibialis nerve with respect to the gait cycle. Consequently, the intersession reliability of the soleus muscle H-reflex during treadmill walking was investigated. Seven young participants performed walking trials on a treadmill at 5 km/h. The stimulating electrode was placed on the tibial nerve in the popliteal fossa. An EMG was recorded from the soleus muscle. To synchronize the stimulus to the gait cycle, initial heel strike was detected with a plantar pressure sole. Maximum H-reflex amplitude and M-wave amplitude were obtained and the Hmax/Mmax ratio was calculated. Data reveals excellent reliability, ICC = 0.89. Test-retest variability was 13.0\% (+/- 11.8). The Bland-Altman analysis showed a systematic error of 2.4\%. The plantar pressure sole was capable of triggering the stimulation of the tibialis nerve in a reliable way and offers a simple technique for the evaluation of reflex activity during walking.}, language = {en} } @article{PrieskeMuehlbauerMuelleretal.2013, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and M{\"u}ller, Steffen and Kr{\"u}ger, Tom and Kibele, Armin and Behm, David G. and Granacher, Urs}, title = {Effects of surface instability on neuromuscular performance during drop jumps and landings}, series = {European journal of applied physiology}, volume = {113}, journal = {European journal of applied physiology}, number = {12}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-013-2724-6}, pages = {2943 -- 2951}, year = {2013}, abstract = {The purpose of this study was to investigate the effects of surface instability on measures of performance and activity of leg and trunk muscles during drop jumps and landings. Drop jumps and landings were assessed on a force plate under stable and unstable (balance pad on top of the force plate) conditions. Performance measures (contact time, jump height, peak ground reaction force) and electromyographic (EMG) activity of leg and trunk muscles were tested in 27 subjects (age 23 +/- A 3 years) during different time intervals (preactivation phase, braking phase, push-off phase). The performance of drop jumps under unstable compared to stable conditions produced a decrease in jump height (9 \%, p < 0.001, f = 0.92) and an increase in peak ground reaction force (5 \%, p = 0.022, f = 0.72), and time for braking phase (12 \%, p < 0.001, f = 1.25). When performing drop jumps on unstable compared to stable surfaces, muscle activity was reduced in the lower extremities during the preactivation, braking and push-off phases (11-25 \%, p < 0.05, 0.48 a parts per thousand currency sign f a parts per thousand currency sign 1.23). Additionally, when landing on unstable compared to stable conditions, reduced lower limb muscle activities were observed during the preactivation phase (7-60 \%, p < 0.05, 0.50 a parts per thousand currency sign f a parts per thousand currency sign 3.62). Trunk muscle activity did not significantly differ between the test conditions for both jumping and landing tasks. The present findings indicate that modified feedforward mechanisms in terms of lower leg muscle activities during the preactivation phase and/or possible alterations in leg muscle activity shortly after ground contact (i.e., braking phase) are responsible for performance decrements during jumping on unstable surfaces.}, language = {en} }