@article{PaulyHelleMiramontetal.2018, author = {Pauly, Maren and Helle, Gerhard and Miramont, Cecile and Buentgen, Ulf and Treydte, Kerstin and Reinig, Frederick and Guibal, Frederic and Sivan, Olivier and Heinrich, Ingo and Riedel, Frank and Kromer, Bernd and Balanzategui, Daniel and Wacker, Lukas and Sookdeo, Adam and Brauer, Achim}, title = {Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-32251-2}, pages = {8}, year = {2018}, abstract = {Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front.}, language = {en} } @misc{PaulyHelleMiramontetal.2018, author = {Pauly, Maren and Helle, Gerhard and Miramont, C{\´e}cile and B{\"u}ntgen, Ulf and Treydte, Kerstin and Reinig, Frederick and Guibal, Fr{\´e}d{\´e}ric and Sivan, Olivier and Heinrich, Ingo and Riedel, Frank and Kromer, Bernd and Balanzategui, Daniel and Wacker, Lukas and Sookdeo, Adam Sookdeo and Brauer, Achim}, title = {Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1135}, issn = {1866-8372}, doi = {10.25932/publishup-45916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459169}, pages = {10}, year = {2018}, abstract = {Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front.}, language = {en} } @article{SpijkermanLukasWacker2017, author = {Spijkerman, Elly and Lukas, Marcus and Wacker, Alexander}, title = {Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility}, series = {Phytochemistry : an international journal of plant biochemistry}, volume = {144}, journal = {Phytochemistry : an international journal of plant biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0031-9422}, doi = {10.1016/j.phytochem.2017.08.018}, pages = {43 -- 51}, year = {2017}, abstract = {Mixing events in stratified lakes result in microalgae being exposed to varying conditions in light and organic carbon concentrations. Stratified lakes consist of an upper illuminated strata and a lower, darker strata where organic carbon accumulates. Therefore, in this contribution we explore the importance of dissolved organic carbon for growth under various light intensities by measuring some ecophysiological adaptations in two green microalgae. We compared the non-motile Chlorella vulgaris with the flagellated Chlamydomonas acidophila under auto-, mixo-, and heterotrophic growth conditions. In both algae the maximum photosynthetic and growth rates were highest under mixotrophy, and both algae appeared inhibited in their phosphorus acquisition under heterotrophy. Heterotrophic conditions provoked the largest differences as C. vulgaris produced chlorophyll a in darkness and grew as well as in autotrophic conditions, whereas Chl. acidophila bleached and could not grow heterotrophically. Although the fatty acid composition of both phytoplankton species differed, both species reacted in a similar way to changes in their growth conditions, mainly by a decrease of C18:3n-3 and an increase of C18:1n-9 from auto- to heterotrophic conditions. The two contrasting responses within the group of green microalgae suggest that dissolved organic carbon has a high deterministic potential to explain the survival and behaviour of green algae in the deeper strata of lakes.}, language = {en} } @article{LukasFrostWacker2013, author = {Lukas, Marcus and Frost, Paul C. and Wacker, Alexander}, title = {The neonate nutrition hypothesis - early feeding affects the body stoichiometry of Daphnia offspring}, series = {Freshwater biology}, volume = {58}, journal = {Freshwater biology}, number = {11}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0046-5070}, doi = {10.1111/fwb.12213}, pages = {2333 -- 2344}, year = {2013}, abstract = {Aquatic herbivores consume variable quantities and qualities of food. In freshwater systems, where phosphorus (P) is often a primary limiting element, inadequate dietary P can slow maternal growth and reduce body P content. There remains uncertainty about whether and how dietary effects on mothers are transferred to offspring by way of egg provisioning. Using the keystone herbivore Daphnia, we tested a novel explanation (the neonate nutrition hypothesis') to determine whether the early nutrition of newborns affects their elemental composition and whether the indications of differences in maternal P nutrition found previously might be overestimated. We thus examined the P content of mothers and their eggs from deposition through development to the birth of neonates. We examined further whether very short periods of ingestion (3h) by the offspring alter the overall P content of juvenile Daphnia. We showed that strong dietary P effects on mothers were not directly transferred to their eggs. Irrespective of the supply of P in the maternal diet, the P content of eggs in different developmental stages and in (unfed) neonates did not differ. This indicates that Daphnia mothers do not reduce the quality (in terms of P) of newly produced offspring after intermittent periods (i.e. several days) of poor nutrition. In contrast, the P content of neonates reflected that of their food after brief periods of feeding, indicating that even temporary exposure to nutrient poor food immediately after birth may strongly affect the elemental composition of neonates. Our results thus support the neonate nutrition hypothesis, which, like differential maternal provisioning, is a possible explanation for the variable elemental quality of young Daphnia.}, language = {en} } @article{LukasWacker2014, author = {Lukas, Marcus and Wacker, Alexander}, title = {Constraints by oxygen and food quality on carbon pathway regulation: a co-limitation study with an aquatic key herbivore}, series = {Ecology : a publication of the Ecological Society of America}, volume = {95}, journal = {Ecology : a publication of the Ecological Society of America}, number = {11}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, pages = {3068 -- 3079}, year = {2014}, abstract = {In food webs, herbivores are often constrained by low food quality in terms of mineral and biochemical limitations, which in aquatic ecosystems can co-occur with limited oxygen conditions. As low food quality implies that carbon (C) is available in excess, and therefore a regulation to get rid of excess C is crucial for the performance of consumers, we examined the C pathways (ingestion, feces release, excretion, and respiration) of a planktonic key herbivore (Daphnia magna). We tested whether consumer C pathways increase due to mineral (phosphorus, P) or biochemical (cholesterol and fatty acid) limitations and how these regulations vary when in addition oxygen is low. Under such conditions, at least the capability of the upregulation of respiration may be restricted. Furthermore, we discussed the potential role of the oxygen-transporting protein hemoglobin (Hb) in the regulation of C budgets. Different food quality constraints led to certain C regulation patterns to increase the removal of excess dietary C: P-limited D. magna increased excretion and respiration, while cholesterol-limited Daphnia in addition upregulated the release of feces. In contrast, the regulative effort was low and only feces release increased when D. magna was limited by a long-chain polyunsaturated fatty acid (eicosapentaenoic acid, EPA). Co-limiting oxygen did not always impact the discharge of excess C. We found the food-quality-induced upregulation of respiration was still present at low oxygen. In contrast, higher excretion of excess C was diminished at low oxygen supply. Besides the effect that the Hb concentration increased under low oxygen, our results indicate a low food-quality-induced increase in the Hb content of the animals. Overall, C budgeting is phenotypically plastic towards different (co-) limiting scenarios. These trigger specific regulation responses that could be the result of evolutionary adaptations.}, language = {en} } @article{LukasSperfeldWacker2011, author = {Lukas, Marcus and Sperfeld, Erik and Wacker, Alexander}, title = {Growth Rate Hypothesis does not apply across colimiting conditions cholesterol limitation affects phosphorus homoeostasis of an aquatic herbivore}, series = {Functional ecology : an official journal of the British Ecological Society}, volume = {25}, journal = {Functional ecology : an official journal of the British Ecological Society}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0269-8463}, doi = {10.1111/j.1365-2435.2011.01876.x}, pages = {1206 -- 1214}, year = {2011}, abstract = {1. Herbivores show stronger control of element homoeostasis than primary producers, which can lead to constraints in carbon and nutrient transfer efficiencies from plants to animals. Insufficient dietary phosphorus (P) availability can cause reduced body P contents along with lower growth rates of animals, leading to a positive relationship between growth and body P. 2. We examined how a second limiting food component in combination with dietary P limitation influences growth and P homoeostasis of a herbivore and how this colimitation influences the hypothesized positive correlation between body P content and growth rates. Therefore, we investigated the responses in somatic growth and P stoichiometry of Daphnia magna raised on a range of diets with different amounts of P and the sterol cholesterol. 3. Somatic growth rates of D. magna increased asymptotically with increasing P as well as with increasing cholesterol availability. The body P content increased with increasing dietary P and stabilized at high dietary P availability. The observed plasticity in D. magna's P stoichiometry became stronger with increasing cholesterol availability, i.e. with decreasing colimitation by cholesterol. 4. At P-limiting conditions, the positive correlation between body P content and growth rate, as predicted by the growth rate hypothesis (GRH) applied to the within-species level, declined with increasing cholesterol limitation and disappeared entirely when cholesterol was not supplied. Thus, even when Daphnia shows no growth response owing to strong limitation by the colimiting nutrient, the body P content may vary substantially, calling into question the unconditional use of herbivores' P content as predictor of a potential P limitation in nature. 5. The observed interaction between dietary P and cholesterol on Daphnia's growth and stoichiometry can be used as a conceptual framework of how colimiting essential nutrients affect herbivore homoeostasis, and provide further insights into the applicability of the GRH within a consumer species.}, language = {en} } @article{LukasWacker2014, author = {Lukas, Marcus and Wacker, Alexander}, title = {Daphnia's dilemma: adjustment of carbon budgets in the face of food and cholesterol limitation}, series = {The journal of experimental biology}, volume = {217}, journal = {The journal of experimental biology}, number = {7}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0022-0949}, doi = {10.1242/jeb.094151}, pages = {1079 -- 1086}, year = {2014}, abstract = {We studied the carbon (C) metabolism in Daphnia when the amount of C (food quantity) and/or the content of biochemical nutrients (food quality) was limiting. Growth performances and C budgets of Daphnia magna (assimilation, faeces egestion, excretion and respiration measured by [C-14]-tracing) were analysed when animals were raised on different food quantities and concentrations of cholesterol, an essential biochemical food compound. Cholesterol is of special interest because it not only acts as limiting nutrient but also contributes to the overall C pool of the animals. As the tissue cholesterol concentration in Daphnia is quite low, we hypothesized the selective exclusion of cholesterol from C budgeting and tested this using radiolabelled cholesterol. Somatic growth rates of D. magna were highest at high quantity and quality and were reduced to a moderate value if either the food quantity or the cholesterol concentration was low. Growth was lowest at low food quantity and quality. The measurements of C budgets revealed high regulative response to low food quality at high food quantity only. Here, low dietary cholesterol caused bulk C assimilation efficiency (AE) to decrease and assimilated (excess) C to be increasingly respired. Additionally, Daphnia enhanced efficient adjustment of C budgets when facing cholesterol limitation by (1) increasing the AE of the cholesterol itself and (2) not changing cholesterol respiration, which was still not detectable. In contrast, at low food quantity, Daphnia is unable to adjust for low food quality, emphasizing that food limitation could overrule food quality effects.}, language = {en} } @article{LukasWacker2014, author = {Lukas, Marcus and Wacker, Alexander}, title = {Acclimation to dietary shifts impacts the carbon budgets of Daphnia magna}, series = {Journal of plankton research}, volume = {36}, journal = {Journal of plankton research}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbu018}, pages = {848 -- 858}, year = {2014}, abstract = {Daphnia responds to low availability of carbon (food quantity) or limiting concentrations of nutrients relative to carbon (C) in excess (food quality) by respectively saving or discharging C via different pathways. We investigated which kind of food limitation leads to a faster regulation in Daphnia C budgets, and whether the pre-assimilative C pathways, ingestion and faeces egestion and the post-assimilative C pathways, excretion and respiration, are regulated concurrently. Daphnia magna were exposed to dietary shifts in different food quantities or qualities; food quality was varied in terms of the essential component, cholesterol. After acclimation to the new diet ranging from 0 to 96 h, C budgets were measured by a radiotracer technique. Dietary shifts in quantity and quality caused Daphnia to quickly adjust their C budgets within 6 h, but different C pathways were affected. A shift to low food quantity reduced Daphnia respiration indicating C retention. In contrast, sudden low quality food caused increased faeces egestion to discharge excess C. Furthermore, we observed a delayed increase in excretion but no change in respiration within the time frame studied. Such time-shifted responses appear to be an appropriate means to keep the costs of physiological adjustments relatively low, which in turn would benefit Daphnia performance.}, language = {en} } @article{HectorHautierSaneretal.2010, author = {Hector, Andy and Hautier, Yann and Saner, Philippe and Wacker, Lukas and Bagchi, Robert and Joshi, Jasmin Radha and Scherer-Lorenzen, Michael and Spehn, Eva M. and Bazeley-White, Ellen and Weilenmann, Markus and Caldeira, Maria da Concei{\c{c}}{\~a}o Br{\´a}lio de Brito and Dimitrakopoulos, Panayiotis G. and Finn, John A. and Huss-Danell, Kerstin and Jumpponen, Ari and Mulder, Christa P. H. and Palmborg, Cecilia and Pereira, J. S. and Siamantziouras, Akis S. D. and Terry, Andrew C. and Troumbis, Andreas Y. and Schmid, Bernhard and Loreau, Michel}, title = {General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding}, issn = {0012-9658}, year = {2010}, abstract = {Insurance effects of biodiversity can stabilize the functioning of multispecies ecosystems against environmental variability when differential species' responses lead to asynchronous population dynamics. When responses are not perfectly positively correlated, declines in some populations are compensated by increases in others, smoothing variability in ecosystem productivity. This variance reduction effect of biodiversity is analogous to the risk- spreading benefits of diverse investment portfolios in financial markets. We use data from the BIODEPTH network of grassland biodiversity experiments to perform a general test for stabilizing effects of plant diversity on the temporal variability of individual species, functional groups, and aggregate communities. We tested three potential mechanisms: reduction of temporal variability through population asynchrony; enhancement of long-term average performance through positive selection effects; and increases in the temporal mean due to overyielding. Our results support a stabilizing effect of diversity on the temporal variability of grassland aboveground annual net primary production through two mechanisms. Two-species communities with greater population asynchrony were more stable in their average production over time due to compensatory fluctuations. Overyielding also stabilized productivity by increasing levels of average biomass production relative to temporal variability. However, there was no evidence for a performance-enhancing effect on the temporal mean through positive selection effects. In combination with previous work, our results suggest that stabilizing effects of diversity on community productivity through population asynchrony and overyielding appear to be general in grassland ecosystems.}, language = {en} } @article{HippeKoberZeilingeretal.2012, author = {Hippe, Kristina and Kober, Florian and Zeilinger, Gerold and Ivy-Ochs, Susan and Maden, Colin and Wacker, Lukas and Kubik, Peter W. and Wieler, Rainer}, title = {Quantifying denudation rates and sediment storage on the eastern Altiplano, Bolivia, using cosmogenic Be-10, Al-26, and in situ C-14}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {179}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, number = {22}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2012.07.031}, pages = {58 -- 70}, year = {2012}, abstract = {Denudation processes and sediment transfer are investigated in a high-elevation, low-relief environment (eastern Altiplano, Bolivia) using Be-10, Al-26, and in situ C-14 analysis in fluvial sediments. Concentrations of the long-lived nuclides Be-10 and Al-26 yield consistently low catchment-wide denudation rates of similar to 3-29 mm ky(-1) (integrating over 21-194 ky), which reflect the low geomorphic gradients and the discontinuity of fluvial transport along the eastern Altiplano margin. No significant correlation is recorded between denudation rates of individual catchments and morphological basin parameters (slope, area, elevation). This is attributed to the overall little variability in morphology. The agreement between the denudation rates and published modern sediment discharge data suggests steady landscape evolution of the eastern Altiplano from the latest Pleistocene until today. While Be-10 and Al-26 provide long-term estimates on sediment production, in situ cosmogenic C-14 is used to trace short-term sediment storage. In situ C-14 concentrations are comparatively low indicating that C-14 decayed during alluvial storage over at least the past similar to 11-20 ky. We assume storage at shallow depth (2 m) and consider the influence of soil-mantled hillslopes on the in situ C-14 concentration. Our results illustrate the importance of sediment storage even over short distances and demonstrate the potential of in situ C-14 to study sediment routing and transfer times within drainage systems. However, this study also demonstrates that the long-lived Be-10 and Al-26 nuclides can provide adequate estimates on long-term denudation rates even if sediment transport is not fast but interrupted by several thousands of years of storage.}, language = {en} } @article{HemingwayHiltonHoviusetal.2018, author = {Hemingway, Jordon Dennis and Hilton, Robert G. and Hovius, Niels and Eglinton, Timothy I. and Haghipour, Negar and Wacker, Lukas and Chen, Meng-Chiang and Galy, Valier V.}, title = {Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils}, series = {Science}, volume = {360}, journal = {Science}, number = {6385}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aao6463}, pages = {209 -- +}, year = {2018}, abstract = {Lithospheric organic carbon ("petrogenic"; OCpetro) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO2) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 +/- 11\% of the OCpetro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OCpetro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO2 emission fluxes that increase with erosion rate, thereby counteracting CO2 drawdown by silicate weathering and biospheric OC burial.}, language = {en} }