@article{PazPeterSchmidtetal.2012, author = {Paz, Cristian and Peter, Martin G. and Schmidt, Bernd and Becerra, Jose and Gutierrez, Margarita and Astudillo, Luis and Silva, Mario}, title = {Synthesis and AChE inhibiting activity of 2, 4 substituted 6-Phenyl Pyrimidines}, series = {Journal of the Chilean Chemical Society}, volume = {57}, journal = {Journal of the Chilean Chemical Society}, number = {3}, publisher = {Sociedad Chilena De Quimica}, address = {Concepcion}, issn = {0717-9324}, pages = {1292 -- 1294}, year = {2012}, abstract = {Novel substituted pyrimidines were synthesized from methyl 2,4-dioxo-4-phenyl-butanoate (I-A) and urea, followed by Mitsunobu coupling of I-A with benzyl or allyl alcohol to give the corresponding 2-hydroxypyrimidine ethers in good yields. Saponification of I-A, followed by reaction with benzyl or allyl amines in the presence of TBTU yielded 2-hydroxy-6-phenyl-pyrimidine 4-carboxamides. AChE and BuChE assays revealed 2-hydroxy-6-phenyl-pyrimidine-4-carboxyallyamide as the most active compound, IC50=90 mu M, with no inhibition of BuChE.}, language = {en} } @article{AstudilloSotomayorJaraMunozMelnicketal.2021, author = {Astudillo-Sotomayor, Luis and Jara Mu{\~n}oz, Julius and Melnick, Daniel and Cort{\´e}s-Aranda, Joaqu{\´i}n and Tassara, Andr{\´e}s and Strecker, Manfred}, title = {Fast Holocene slip and localized strain along the Liqui{\~n}e-Ofqui strike-slip fault system, Chile}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-85036-5}, pages = {10}, year = {2021}, abstract = {In active tectonic settings dominated by strike-slip kinematics, slip partitioning across subparallel faults is a common feature; therefore, assessing the degree of partitioning and strain localization is paramount for seismic hazard assessments. Here, we estimate a slip rate of 18.8 +/- 2.0 mm/year over the past 9.0 +/- 0.1 ka for a single strand of the Liquirie-Ofqui Fault System, which straddles the Main Cordillera in Southern Chile. This Holocene rate accounts for similar to 82\% of the trench-parallel component of oblique plate convergence and is similar to million-year estimates integrated over the entire fault system. Our results imply that strain localizes on a single fault at millennial time scale but over longer time scales strain localization is not sustained. The fast millennial slip rate in the absence of historical Mw> 6.5 earthquakes along the Liquine-Ofqui Fault System implies either a component of aseismic slip or Mw similar to 7 earthquakes involving multi-trace ruptures and > 150-year repeat times. Our results have implications for the understanding of strike-slip fault system dynamics within volcanic arcs and seismic hazard assessments.}, language = {en} }