@article{SoupionaSamarasOrtizAmezcuaetal.2019, author = {Soupiona, Ourania and Samaras, Stefanos and Ortiz-Amezcua, Pablo and B{\"o}ckmann, Christine and Papayannis, Alexandros D. and Moreira, Gregori De Arruda and Benavent-Oltra, Jose Antonio and Guerrero-Rascado, Juan Luis and Bedoya-Vel{\´a}squez, Andres Esteban and Olmo-Reyes, Francisco Jos{\´e} and Rom{\´a}n, Roberto and Kokkalis, Panagiotis and Mylonaki, Maria and Alados-Arboledas, Lucas and Papanikolaou, Christina Anna and Foskinis, Romanos}, title = {Retrieval of optical and microphysical properties of transported Saharan dust over Athens and Granada based on multi-wavelength Raman lidar measurements: Study of the mixing processes}, series = {Atmospheric environment : air pollution ; emissions, transport and dispersion, transformation, deposition effects, micrometeorology, urban atmosphere, global atmosphere}, volume = {214}, journal = {Atmospheric environment : air pollution ; emissions, transport and dispersion, transformation, deposition effects, micrometeorology, urban atmosphere, global atmosphere}, publisher = {Elsevier}, address = {Oxford}, issn = {1352-2310}, doi = {10.1016/j.atmosenv.2019.116824}, pages = {15}, year = {2019}, abstract = {In this paper we extract the aerosol microphysical properties for a collection of mineral dust cases measured by multi-wavelength depolarization Raman lidar systems located at the National Technical University of Athens (NTUA, Athens, Greece) and the Andalusian Institute for Earth System Research (IISTA-CEAMA, Granada, Spain). The lidar-based retrievals were carried out with the Spheroidal Inversion eXperiments software tool (SphInX) developed at the University of Potsdam (Germany). The software uses regularized inversion of a two-dimensional enhancement of the Mie model based on the spheroid-particle approximation with the aspect ratio determining the particle shape. The selection of the cases was based on the transport time from the source regions to the measuring sites. The aerosol optical depth as measured by AERONET ranged from 0.27 to 0.54 (at 500 nm) depending on the intensity of each event. Our analysis showed the hourly mean particle linear depolarization ratio and particle lidar ratio values at 532 nm ranging from 11 to 34\% and from 42 to 79 sr respectively, depending on the mixing status, the corresponding air mass pathways and their transport time. Cases with shorter transport time showed good agreement in terms of the optical and SphInX-retrieved microphysical properties between Athens and Granada providing a complex refractive index value equal to 1.4 + 0.004i. On the other hand, the results for cases with higher transport time deviated from the aforementioned ones as well as from each other, providing, in particular, an imaginary part of the refractive index ranging from 0.002 to 0.005. Reconstructions of two-dimensional shape-size distributions for each selected layer showed that the dominant effective particle shape was prolate with diverse spherical contributions. The retrieved volume concentrations reflect overall the intensity of the episodes.}, language = {en} } @article{SchneiderMaximovaSakizloglouetal.2021, author = {Schneider, Sven and Maximova, Maria and Sakizloglou, Lucas and Giese, Holger}, title = {Formal testing of timed graph transformation systems using metric temporal graph logic}, series = {International journal on software tools for technology transfer}, volume = {23}, journal = {International journal on software tools for technology transfer}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {1433-2779}, doi = {10.1007/s10009-020-00585-w}, pages = {411 -- 488}, year = {2021}, abstract = {Embedded real-time systems generate state sequences where time elapses between state changes. Ensuring that such systems adhere to a provided specification of admissible or desired behavior is essential. Formal model-based testing is often a suitable cost-effective approach. We introduce an extended version of the formalism of symbolic graphs, which encompasses types as well as attributes, for representing states of dynamic systems. Relying on this extension of symbolic graphs, we present a novel formalism of timed graph transformation systems (TGTSs) that supports the model-based development of dynamic real-time systems at an abstract level where possible state changes and delays are specified by graph transformation rules. We then introduce an extended form of the metric temporal graph logic (MTGL) with increased expressiveness to improve the applicability of MTGL for the specification of timed graph sequences generated by a TGTS. Based on the metric temporal operators of MTGL and its built-in graph binding mechanics, we express properties on the structure and attributes of graphs as well as on the occurrence of graphs over time that are related by their inner structure. We provide formal support for checking whether a single generated timed graph sequence adheres to a provided MTGL specification. Relying on this logical foundation, we develop a testing framework for TGTSs that are specified using MTGL. Lastly, we apply this testing framework to a running example by using our prototypical implementation in the tool AutoGraph.}, language = {en} } @article{FennekohlLucasPueschel2000, author = {Fennekohl, Alexandra and Lucas, Maria and P{\"u}schel, Gerhard Paul}, title = {Induction by interleukin 6 of G(s)-coupled prostaglandin E(2) receptors in rat hepatocytes mediating a prostaglandin e(2)-dependent inhibition of the hepatocyte's acute phase response}, year = {2000}, abstract = {Prostanoids, that are released from nonparenchymal liver cells in response to proinflammatory stimuli, are involved in the regulation of hepatic functions during inflammation. They exert their effects on their target cells via heptahelical receptors in the plasma membrane. For the 5 prostanoids prostaglandin E(2) (PGE(2)), prostaglandin F(2alpha), prostaglandin D(2) (PGD(2)), prostacyclin, and thromboxane A(2) there exist 8 receptors that are coupled to different heterotrimeric G proteins. These receptors are expressed differentially in the 4 principal liver cell types, i.e., hepatocytes, Kupffer cells, sinusoidal endothelial cells, and hepatic stellate cells. It was intriguing, that the messenger RNA (mRNA) of none of the G(s)-coupled prostanoid receptors (DP-R, EP2-R, EP4-R, and IP-R) that can attenuate the inflammatory reaction were present in hepatocytes. The current study shows that the expression of the G(s)-coupled prostanoid receptors EP2-R, EP4-R, and DP-R, but not the IP-R, was efficiently and rapidly up-regulated by treatment of hepatocytes in vitro or rats in vivo with the key acute phase cytokine interleukin 6 (IL-6). In IL-6-treated hepatocytes PGE(2) in turn attenuated the IL-6-induced alpha(2)-macroglobulin formation via a cyclic adenosine monophosphate (cAMP)- dependent signal chain. The data indicate that an IL-6-mediated induction of the previously not expressed EP2-R and EP4- R on hepatocytes might establish a prostanoid-mediated feedback inhibition loop for the attenuation of the acute phase response.}, language = {en} } @book{GieseMaximovaSakizloglouetal.2018, author = {Giese, Holger and Maximova, Maria and Sakizloglou, Lucas and Schneider, Sven}, title = {Metric temporal graph logic over typed attributed graphs}, number = {123}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-433-3}, issn = {1613-5652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411351}, publisher = {Universit{\"a}t Potsdam}, pages = {29}, year = {2018}, abstract = {Various kinds of typed attributed graphs are used to represent states of systems from a broad range of domains. For dynamic systems, established formalisms such as graph transformations provide a formal model for defining state sequences. We consider the extended case where time elapses between states and introduce a logic to reason about these sequences. With this logic we express properties on the structure and attributes of states as well as on the temporal occurrence of states that are related by their inner structure, which no formal logic over graphs accomplishes concisely so far. Firstly, we introduce graphs with history by equipping every graph element with the timestamp of its creation and, if applicable, its deletion. Secondly, we define a logic on graphs by integrating the temporal operator until into the well-established logic of nested graph conditions. Thirdly, we prove that our logic is equally expressive to nested graph conditions by providing a suitable reduction. Finally, the implementation of this reduction allows for the tool-based analysis of metric temporal properties for state sequences.}, language = {en} } @book{GieseMaximovaSakizloglouetal.2019, author = {Giese, Holger and Maximova, Maria and Sakizloglou, Lucas and Schneider, Sven}, title = {Metric temporal graph logic over typed attributed graphs}, number = {127}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-463-0}, issn = {1613-5652}, doi = {10.25932/publishup-42752}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427522}, publisher = {Universit{\"a}t Potsdam}, pages = {34}, year = {2019}, abstract = {Graph repair, restoring consistency of a graph, plays a prominent role in several areas of computer science and beyond: For example, in model-driven engineering, the abstract syntax of models is usually encoded using graphs. Flexible edit operations temporarily create inconsistent graphs not representing a valid model, thus requiring graph repair. Similarly, in graph databases—managing the storage and manipulation of graph data—updates may cause that a given database does not satisfy some integrity constraints, requiring also graph repair. We present a logic-based incremental approach to graph repair, generating a sound and complete (upon termination) overview of least-changing repairs. In our context, we formalize consistency by so-called graph conditions being equivalent to first-order logic on graphs. We present two kind of repair algorithms: State-based repair restores consistency independent of the graph update history, whereas deltabased (or incremental) repair takes this history explicitly into account. Technically, our algorithms rely on an existing model generation algorithm for graph conditions implemented in AutoGraph. Moreover, the delta-based approach uses the new concept of satisfaction (ST) trees for encoding if and how a graph satisfies a graph condition. We then demonstrate how to manipulate these STs incrementally with respect to a graph update.}, language = {en} } @misc{OrtizAmezcuaGuerreroRascadoGranadosMunozetal.2017, author = {Ortiz-Amezcua, Pablo and Guerrero-Rascado, Juan Luis and Granados-Mu{\~n}oz, Mar{\´i}a Jos{\´e} and Benavent-Oltra, Jos{\´e} Antonio and B{\"o}ckmann, Christine and Samaras, Stefanos and Stachlewska, Iwona Sylwia and Janicka, Łucja and Baars, Holger and Bohlmann, Stephanie and Alados-Arboledas, Lucas}, title = {Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {614}, issn = {1866-8372}, doi = {10.25932/publishup-41660}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-416603}, pages = {5931 -- 5946}, year = {2017}, abstract = {Strong events of long-range transported biomass burning aerosol were detected during July 2013 at three EARLINET (European Aerosol Research Lidar Network) stations, namely Granada (Spain), Leipzig (Germany) and Warsaw (Poland). Satellite observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instruments, as well as modeling tools such as HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and NAAPS (Navy Aerosol Analysis and Prediction System), have been used to estimate the sources and transport paths of those North American forest fire smoke particles. A multiwavelength Raman lidar technique was applied to obtain vertically resolved particle optical properties, and further inversion of those properties with a regularization algorithm allowed for retrieving microphysical information on the studied particles. The results highlight the presence of smoke layers of 1-2 km thickness, located at about 5 km a.s.l. altitude over Granada and Leipzig and around 2.5 km a.s.l. at Warsaw. These layers were intense, as they accounted for more than 30\% of the total AOD (aerosol optical depth) in all cases, and presented optical and microphysical features typical for different aging degrees: color ratio of lidar ratios (LR532/LR355) around 2, alpha-related angstrom exponents of less than 1, effective radii of 0.3 mu m and large values of single scattering albedos (SSA), nearly spectrally independent. The intensive microphysical properties were compared with columnar retrievals form co-located AERONET (Aerosol Robotic Network) stations. The intensity of the layers was also characterized in terms of particle volume concentration, and then an experimental relationship between this magnitude and the particle extinction coefficient was established.}, language = {en} } @article{OrtizAmezcuaGuerreroRascadoJoseGranadosMunozetal.2017, author = {Ortiz-Amezcua, Pablo and Guerrero-Rascado, Juan Luis and Jose Granados-Munoz, Maria and Benavent-Oltra, Jose Antonio and B{\"o}ckmann, Christine and Samaras, Stefanos and Stachlewska, Iwona Sylwia and Janicka, Lucja and Baars, Holger and Bohlmann, Stephanie and Alados-Arboledas, Lucas}, title = {Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations}, series = {Atmospheric Chemistry and Physics}, volume = {17}, journal = {Atmospheric Chemistry and Physics}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1680-7316}, doi = {10.5194/acp-17-5931-2017}, pages = {5931 -- 5946}, year = {2017}, abstract = {Strong events of long-range transported biomass burning aerosol were detected during July 2013 at three EARLINET (European Aerosol Research Lidar Network) stations, namely Granada (Spain), Leipzig (Germany) and Warsaw (Poland). Satellite observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) instruments, as well as modeling tools such as HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) and NAAPS (Navy Aerosol Analysis and Prediction System), have been used to estimate the sources and transport paths of those North American forest fire smoke particles. A multiwavelength Raman lidar technique was applied to obtain vertically resolved particle optical properties, and further inversion of those properties with a regularization algorithm allowed for retrieving microphysical information on the studied particles. The results highlight the presence of smoke layers of 1-2 km thickness, located at about 5 km a.s.l. altitude over Granada and Leipzig and around 2.5 km a.s.l. at Warsaw. These layers were intense, as they accounted for more than 30\% of the total AOD (aerosol optical depth) in all cases, and presented optical and microphysical features typical for different aging degrees: color ratio of lidar ratios (LR532/LR355) around 2, alpha-related angstrom exponents of less than 1, effective radii of 0.3 mu m and large values of single scattering albedos (SSA), nearly spectrally independent. The intensive microphysical properties were compared with columnar retrievals form co-located AERONET (Aerosol Robotic Network) stations. The intensity of the layers was also characterized in terms of particle volume concentration, and then an experimental relationship between this magnitude and the particle extinction coefficient was established.}, language = {en} }