@article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @article{KoenigAblerAgartzetal.2020, author = {Koenig, Julian and Abler, Birgit and Agartz, Ingrid and akerstedt, Torbjorn and Andreassen, Ole A. and Anthony, Mia and Baer, Karl-Juergen and Bertsch, Katja and Brown, Rebecca C. and Brunner, Romuald and Carnevali, Luca and Critchley, Hugo D. and Cullen, Kathryn R. and de Geus, Eco J. C. and de la Cruz, Feliberto and Dziobek, Isabel and Ferger, Marc D. and Fischer, Hakan and Flor, Herta and Gaebler, Michael and Gianaros, Peter J. and Giummarra, Melita J. and Greening, Steven G. and Guendelman, Simon and Heathers, James A. J. and Herpertz, Sabine C. and Hu, Mandy X. and Jentschke, Sebastian and Kaess, Michael and Kaufmann, Tobias and Klimes-Dougan, Bonnie and Koelsch, Stefan and Krauch, Marlene and Kumral, Deniz and Lamers, Femke and Lee, Tae-Ho and Lekander, Mats and Lin, Feng and Lotze, Martin and Makovac, Elena and Mancini, Matteo and Mancke, Falk and Mansson, Kristoffer N. T. and Manuck, Stephen B. and Mather, Mara and Meeten, Frances and Min, Jungwon and Mueller, Bryon and Muench, Vera and Nees, Frauke and Nga, Lin and Nilsonne, Gustav and Ordonez Acuna, Daniela and Osnes, Berge and Ottaviani, Cristina and Penninx, Brenda W. J. H. and Ponzio, Allison and Poudel, Govinda R. and Reinelt, Janis and Ren, Ping and Sakaki, Michiko and Schumann, Andy and Sorensen, Lin and Specht, Karsten and Straub, Joana and Tamm, Sandra and Thai, Michelle and Thayer, Julian F. and Ubani, Benjamin and van Der Mee, Denise J. and van Velzen, Laura S. and Ventura-Bort, Carlos and Villringer, Arno and Watson, David R. and Wei, Luqing and Wendt, Julia and Schreiner, Melinda Westlund and Westlye, Lars T. and Weymar, Mathias and Winkelmann, Tobias and Wu, Guo-Rong and Yoo, Hyun Joo and Quintana, Daniel S.}, title = {Cortical thickness and resting-state cardiac function across the lifespan}, series = {Psychophysiology : journal of the Society for Psychophysiological Research}, volume = {58}, journal = {Psychophysiology : journal of the Society for Psychophysiological Research}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0048-5772}, doi = {10.1111/psyp.13688}, pages = {16}, year = {2020}, abstract = {Understanding the association between autonomic nervous system [ANS] function and brain morphology across the lifespan provides important insights into neurovisceral mechanisms underlying health and disease. Resting-state ANS activity, indexed by measures of heart rate [HR] and its variability [HRV] has been associated with brain morphology, particularly cortical thickness [CT]. While findings have been mixed regarding the anatomical distribution and direction of the associations, these inconsistencies may be due to sex and age differences in HR/HRV and CT. Previous studies have been limited by small sample sizes, which impede the assessment of sex differences and aging effects on the association between ANS function and CT. To overcome these limitations, 20 groups worldwide contributed data collected under similar protocols of CT assessment and HR/HRV recording to be pooled in a mega-analysis (N = 1,218 (50.5\% female), mean age 36.7 years (range: 12-87)). Findings suggest a decline in HRV as well as CT with increasing age. CT, particularly in the orbitofrontal cortex, explained additional variance in HRV, beyond the effects of aging. This pattern of results may suggest that the decline in HRV with increasing age is related to a decline in orbitofrontal CT. These effects were independent of sex and specific to HRV; with no significant association between CT and HR. Greater CT across the adult lifespan may be vital for the maintenance of healthy cardiac regulation via the ANS-or greater cardiac vagal activity as indirectly reflected in HRV may slow brain atrophy. Findings reveal an important association between CT and cardiac parasympathetic activity with implications for healthy aging and longevity that should be studied further in longitudinal research.}, language = {en} } @article{ChenGuentherGrosseetal.2018, author = {Chen, Jie and G{\"u}nther, Frank and Grosse, Guido and Liu, Lin and Lin, Hui}, title = {Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta}, series = {Remote sensing}, volume = {10}, journal = {Remote sensing}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs10071152}, pages = {16}, year = {2018}, abstract = {Yedoma-extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene-is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016-17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016-17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations.}, language = {en} } @misc{ChenGuentherGrosseetal.2018, author = {Chen, Jie and G{\"u}nther, Frank and Grosse, Guido and Liu, Lin and Lin, Hui}, title = {Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {690}, issn = {1866-8372}, doi = {10.25932/publishup-42680}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426807}, pages = {16}, year = {2018}, abstract = {Yedoma-extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene-is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016-17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016-17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations.}, language = {en} } @article{FurnissNodaBoggsetal.2015, author = {Furniss, A. and Noda, K. and Boggs, S. and Chiang, J. and Christensen, F. and Craig, W. and Giommi, P. and Hailey, C. and Harisson, F. and Madejski, G. and Nalewajko, K. and Perri, M. and Stern, D. and Urry, M. and Verrecchia, F. and Zhang, W. and Ahnen, M. L. and Ansoldi, S. and Antonelli, L. A. and Antoranz, P. and Babic, A. and Banerjee, B. and Bangale, P. and de Almeida, U. Barres and Barrio, J. A. and Becerra Gonzalez, J. and Bednarek, W. and Bernardini, E. and Biasuzzi, B. and Biland, A. and Blanch Bigas, O. and Bonnefoy, S. and Bonnoli, G. and Borracci, F. and Bretz, T. and Carmona, E. and Carosi, A. and Chatterjee, A. and Clavero, R. and Colin, P. and Colombo, E. and Contreras, J. L. and Cortina, J. and Covino, S. and Da Vela, P. and Dazzi, F. and De Angelis, A. and De Caneva, G. and De Lotto, B. and de Ona Wilhelmi, E. and Delgado Mendez, C. and Di Pierro, F. and Prester, Dijana Dominis and Dorner, D. and Doro, M. and Einecke, S. and Eisenacher Glawion, D. and Elsaesser, D. and Fernandez-Barral, A. and Fidalgo, D. and Fonseca, M. V. and Font, L. and Frantzen, K. and Fruck, C. and Galindo, D. and Garcia Lopez, R. J. and Garczarczyk, M. and Garrido Terrats, D. and Gaug, M. and Giammaria, P. and Godinovic, N. and Gonzalez Munoz, A. and Guberman, D. and Hanabata, Y. and Hayashida, M. and Herrera, J. and Hose, J. and Hrupec, D. and Hughes, G. and Idec, W. and Kellermann, H. and Kodani, K. and Konno, Y. and Kubo, H. and Kushida, J. and La Barbera, A. and Lelas, D. and Lewandowska, N. and Lindfors, E. and Lombardi, S. and Longo, F. and Lopez, M. and Lopez-Coto, R. and Lopez-Oramas, A. and Lorenz, E. and Majumdar, P. and Makariev, M. and Mallot, K. and Maneva, G. and Manganaro, M. and Mannheim, K. and Maraschi, L. and Marcote, B. and Mariotti, M. and Martinez, M. and Mazin, D. and Menzel, U. and Miranda, J. M. and Mirzoyan, R. and Moralejo, A. and Nakajima, D. and Neustroev, V. and Niedzwiecki, A. and Nievas Rosillo, M. and Nilsson, K. and Nishijima, K. and Orito, R. and Overkemping, A. and Paiano, S. and Palacio, J. and Palatiello, M. and Paneque, D. and Paoletti, R. and Paredes, J. M. and Paredes-Fortuny, X. and Persic, M. and Poutanen, J. and Moroni, P. G. Prada and Prandini, E. and Puljak, I. and Reinthal, R. and Rhode, W. and Ribo, M. and Rico, J. and Garcia, J. Rodriguez and Saito, T. and Saito, K. and Satalecka, K. and Scapin, V. and Schultz, C. and Schweizer, T. and Shore, S. N. and Sillanpaa, A. and Sitarek, J. and Snidaric, I. and Sobczynska, D. and Stamerra, A. and Steinbring, T. and Strzys, M. and Takalo, L. and Takami, H. and Tavecchio, F. and Temnikov, P. and Terzic, T. and Tescaro, D. and Teshima, M. and Thaele, J. and Torres, D. F. and Toyama, T. and Treves, A. and Verguilov, V. and Vovk, I. and Will, M. and Zanin, R. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Gerard, L. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Park, N. and Petry, D. and Pohl, Martin and Popkow, A. and Ragan, K. and Ratliff, G. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Vince, O. and Fuhrmann, L. and Angelakis, E. and Karamanavis, V. and Myserlis, I. and Krichbaum, T. P. and Zensus, J. A. and Ungerechts, H. and Sievers, A. and Bachev, R. and Boettcher, Markus and Chen, W. P. and Damljanovic, G. and Eswaraiah, C. and Guver, T. and Hovatta, T. and Hughes, Z. and Ibryamov, S. I. and Joner, M. D. and Jordan, B. and Jorstad, S. G. and Joshi, M. and Kataoka, J. and Kurtanidze, O. M. and Kurtanidze, S. O. and Lahteenmaki, A. and Latev, G. and Lin, H. C. and Larionov, V. M. and Mokrushina, A. A. and Morozova, D. A. and Nikolashvili, M. G. and Raiteri, C. M. and Ramakrishnan, V. and Readhead, A. C. R. and Sadun, A. C. and Sigua, L. A. and Semkov, E. H. and Strigachev, A. and Tammi, J. and Tornikoski, M. and Troitskaya, Y. V. and Troitsky, I. S. and Villata, M.}, title = {First NuSTAR observations of MRK 501 within a radio to TeV multi-instrument campaign}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {812}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {NuSTAR Team, MAGIC Collaboration, VERITAS Collaboration, F-Gamma Consortium}, issn = {0004-637X}, doi = {10.1088/0004-637X/812/1/65}, pages = {22}, year = {2015}, abstract = {We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 2013 April 1 and August 10, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope, Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Metsahovi, and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a Light Detection and Ranging (LIDAR) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution (SED) between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) show evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton (SSC) model to five simultaneous broadband SEDs. We find that the SSC model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission.}, language = {en} } @article{vanderMeijTemmeLinetal.2018, author = {van der Meij, Marijn W. and Temme, Arnaud J. A. M. and Lin, H. S. and Gerke, Horst H. and Sommer, Michael}, title = {On the role of hydrologic processes in soil and landscape evolution modeling}, series = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, volume = {185}, journal = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2018.09.001}, pages = {1088 -- 1106}, year = {2018}, abstract = {The ability of water to transport and transform soil materials is one of the main drivers of soil and landscape development. In turn, soil and landscape properties determine how water is distributed in soil landscapes. Understanding the complex dynamics of this co-evolution of soils, landscapes and the hydrological system is fundamental in adapting land management to changes in climate. Soil-Landscape Evolution Models (SLEMs) are used to simulate the development and evolution of soils and landscapes. However, many hydrologic processes, such as preferential flow and subsurface lateral flow, are currently absent in these models. This limits the applicability of SLEMs to improve our understanding of feedbacks in the hydro-pedo-geomorphological system. Implementation of these hydrologic processes in SLEMs faces several complications related to calculation demands, limited methods for linking pedogenic and hydrologic processes, and limited data on quantification of changes in the hydrological system over time. In this contribution, we first briefly review processes and feedbacks in soil-landscape-hydrological systems. Next, we elaborate on the development required to include these processes in SLEMs. We discuss the state-of-the-art knowledge, identify complications, give partial solutions and suggest important future development. The main requirements for incorporating hydrologic processes in SLEMs are: (1) designing a model framework that can deal with varying timescales for different sets of processes, (2) developing and implementing methods for simulating pedogenesis as a function of water flow, (3) improving and implementing knowledge on the evolution and dynamics of soil hydraulic properties over different timescales, and (4) improving the database on temporal changes and dynamics of flow paths.}, language = {en} } @article{TubianaRinaldiGuettleretal.2019, author = {Tubiana, C. and Rinaldi, G. and Guettler, C. and Snodgrass, C. and Shi, X. and Hu, X. and Marschall, R. and Fulle, M. and Bockeele-Morvan, D. and Naletto, G. and Capaccioni, F. and Sierks, H. and Arnold, G. and Barucci, M. A. and Bertaux, J-L and Bertini, I and Bodewits, D. and Capria, M. T. and Ciarniello, M. and Cremonese, G. and Crovisier, J. and Da Deppo, V and Debei, S. and De Cecco, M. and Deller, J. and De Sanctis, M. C. and Davidsson, B. and Doose, L. and Erard, S. and Filacchione, G. and Fink, U. and Formisano, M. and Fornasier, S. and Gutierrez, P. J. and Ip, W-H and Ivanovski, S. and Kappel, David and Keller, H. U. and Kolokolova, L. and Koschny, D. and Krueger, H. and La Forgia, F. and Lamy, P. L. and Lara, L. M. and Lazzarin, M. and Levasseur-Regourd, A. C. and Lin, Z-Y and Longobardo, A. and Lopez-Moreno, J. J. and Marzari, F. and Migliorini, A. and Mottola, S. and Rodrigo, R. and Taylor, F. and Toth, I and Zakharov, V}, title = {Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834869}, pages = {14}, year = {2019}, abstract = {Context. On 27 April 2015, when comet 67P/Churyumov-Gerasimenko was at 1.76 au from the Sun and moving toward perihelion, the OSIRIS and VIRTIS-M instruments on board the Rosetta spacecraft simultaneously observed the evolving dust and gas coma during a complete rotation of the comet. Aims. We aim to characterize the spatial distribution of dust, H2O, and CO2 gas in the inner coma. To do this, we performed a quantitative analysis of the release of dust and gas and compared the observed H2O production rate with the rate we calculated using a thermophysical model. Methods. For this study we selected OSIRIS WAC images at 612 nm (dust) and VIRTIS-M image cubes at 612 nm, 2700 nm (H2O emission band), and 4200 nm (CO2 emission band). We measured the average signal in a circular annulus to study the spatial variation around the comet, and in a sector of the annulus to study temporal variation in the sunward direction with comet rotation, both at a fixed distance of 3.1 km from the comet center. Results. The spatial correlation between dust and water, both coming from the sunlit side of the comet, shows that water is the main driver of dust activity in this time period. The spatial distribution of CO2 is not correlated with water and dust. There is no strong temporal correlation between the dust brightness and water production rate as the comet rotates. The dust brightness shows a peak at 0 degrees subsolar longitude, which is not pronounced in the water production. At the same epoch, there is also a maximum in CO2 production. An excess of measured water production with respect to the value calculated using a simple thermophysical model is observed when the head lobe and regions of the southern hemisphere with strong seasonal variations are illuminated (subsolar longitude 270 degrees-50 degrees). A drastic decrease in dust production when the water production (both measured and from the model) displays a maximum occurs when typical northern consolidated regions are illuminated and the southern hemisphere regions with strong seasonal variations are instead in shadow (subsolar longitude 50 degrees-90 degrees). Possible explanations of these observations are presented and discussed.}, language = {en} } @misc{WarschburgerSproesserLinetal.2019, author = {Warschburger, Petra and Sproesser, Gudrun and Lin, Jiaxi and Zahn, Daniela}, title = {Fachgruppe Gesundheitspsychologie Approbation f{\"u}r psychologische Anwendungsf{\"a}cher}, series = {Psychologische Rundschau : offizielles Organ der Deutschen Gesellschaft f{\"u}r Psychologie}, volume = {70}, journal = {Psychologische Rundschau : offizielles Organ der Deutschen Gesellschaft f{\"u}r Psychologie}, number = {4}, publisher = {Hogrefe}, address = {G{\"o}ttingen}, issn = {0033-3042}, pages = {264 -- 265}, year = {2019}, language = {de} } @article{GaoWangZhangetal.2018, author = {Gao, Lin-rui and Wang, Guang and Zhang, Jing and Li, Shuai and Chuai, Manli and Bao, Yongping and Hocher, Berthold and Yang, Xuesong}, title = {High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation}, series = {Journal of Cellular Physiology}, volume = {233}, journal = {Journal of Cellular Physiology}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-9541}, doi = {10.1002/jcp.26528}, pages = {7120 -- 7133}, year = {2018}, abstract = {An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI(+) cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes.}, language = {en} } @misc{KhajooeiLinSteffanetal.2018, author = {Khajooei, Mina and Lin, Chiao-I and Steffan, M{\"u}ller and Mayer, Frank}, title = {Effect of Instability in Legpress Testing on Strength \& Muscle Activity in Functional Ankle Instability}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {50}, journal = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, number = {5S}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, doi = {:10.1249/01.mss.0000537073.01736.db}, pages = {602 -- 602}, year = {2018}, language = {en} }