@article{LiChenQiuetal.2019, author = {Li, Changsheng and Chen, Gangjin and Qiu, Xunlin and Gao, Meng and Gerhard, Reimund}, title = {Modified polytetrafluoroethylene}, series = {Applied physics express : APEX}, volume = {13}, journal = {Applied physics express : APEX}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1882-0778}, doi = {10.7567/1882-0786/ab5b23}, pages = {5}, year = {2019}, abstract = {Three poly(tetrafluoroethylene-hexafluoropropylene-vinylidenefluoride) (TFE-HFP-VDF or THV) terpolymers (Dyneon (R)) with different monomer ratios are investigated to demonstrate the concept of "modified" PTFE for space-charge electrets. HFP and VDF monomers distort the highly ordered PTFE molecules, which effectively enhances processability and adversely affects space-charge storage. Particularly, VDF component renders the material polar and probably also more conductive, partially undermining the space-charge-storage capabilities of PTFE. Nevertheless, the terpolymer THV815 with a TFE/HFP/VDF wt\% ratio of 76.1/10.9/13 combines easy processability and relatively good space-charge stability. Our results shed light on novel concepts for space-charge electret materials with enhanced processing properties and reasonable charge-storage capabilities.}, language = {en} }