@article{LiLiFayetal.2019, author = {Li, Wen-Dong and Li, Shuping and Fay, Doris and Frese, Michael}, title = {Reciprocal Relationships Between Dispositional Optimism and Work Experiences: A Five-Wave Longitudinal Investigation}, series = {Journal of applied psychology}, volume = {104}, journal = {Journal of applied psychology}, number = {12}, publisher = {American Psychological Association}, address = {Washington}, issn = {0021-9010}, doi = {10.1037/apl0000417}, pages = {1471 -- 1486}, year = {2019}, abstract = {Previous research on dispositional optimism has predominantly concentrated on the selection effect of dispositional optimism on predicting work outcomes. Recent research, however, has started to examine the socialization effect of life experiences on fostering dispositional optimism development. Extrapolating primarily from the TESSERA framework of personality development (Wrzus \& Roberts, 2017) and the literature on dispositional optimism, the current study represents a first attempt to reconcile the 2 seemingly contrasting perspectives. We proposed and examined change-related reciprocal relationships between dispositional optimism and work experience variables including income, job insecurity, coworker support. and supervisor support. Latent change score modeling of data from a five-wave longitudinal study demonstrated that dispositional optimism resulted in decreases in job insecurity, and the decreased job insecurity in turn promoted further increases in dispositional optimism later on. Furthermore, income gave rise to increases ill dispositional optimism at a later point in time. but not vice versa. No significant relationships were observed between dispositional optimism and coworker and supervisor support. The findings provide a cautionary note to the majority of previous research based on cross-sectional and lagged designs that assumes causal effects of dispositional optimism on work outcomes. They also showcase the importance of examining personality change in organizational research and enrich our understanding of a more nuanced dynamic interplay between the optimistic employee and the work environment.}, language = {en} } @techreport{BrodeurMikolaCooketal.2024, type = {Working Paper}, author = {Brodeur, Abel and Mikola, Derek and Cook, Nikolai and Brailey, Thomas and Briggs, Ryan and Gendre, Alexandra de and Dupraz, Yannick and Fiala, Lenka and Gabani, Jacopo and Gauriot, Romain and Haddad, Joanne and Lima, Goncalo and Ankel-Peters, J{\"o}rg and Dreber, Anna and Campbell, Douglas and Kattan, Lamis and Fages, Diego Marino and Mierisch, Fabian and Sun, Pu and Wright, Taylor and Connolly, Marie and Hoces de la Guardia, Fernando and Johannesson, Magnus and Miguel, Edward and Vilhuber, Lars and Abarca, Alejandro and Acharya, Mahesh and Adjisse, Sossou Simplice and Akhtar, Ahwaz and Lizardi, Eduardo Alberto Ramirez and Albrecht, Sabina and Andersen, Synve Nygaard and Andlib, Zubaria and Arrora, Falak and Ash, Thomas and Bacher, Etienne and Bachler, Sebastian and Bacon, F{\´e}lix and Bagues, Manuel and Balogh, Timea and Batmanov, Alisher and Barschkett, Mara and Basdil, B. Kaan and Dower, Jaromneda and Castek, Ondrej and Caviglia-Harris, Jill and Strand, Gabriella Chauca and Chen, Shi and Chzhen, Asya and Chung, Jong and Collins, Jason and Coppock, Alexander and Cordeau, Hugo and Couillard, Ben and Crechet, Jonathan and Crippa, Lorenzo and Cui, Jeanne and Czymara, Christian and Daarstad, Haley and Dao, Danh Chi and Dao, Dong and Schmandt, Marco David and Linde, Astrid de and Melo, Lucas De and Deer, Lachlan and Vera, Micole De and Dimitrova, Velichka and Dollbaum, Jan Fabian and Dollbaum, Jan Matti and Donnelly, Michael and Huynh, Luu Duc Toan and Dumbalska, Tsvetomira and Duncan, Jamie and Duong, Kiet Tuan and Duprey, Thibaut and Dworschak, Christoph and Ellingsrud, Sigmund and Elminejad, Ali and Eissa, Yasmine and Erhart, Andrea and Etingin-Frati, Giulian and Fatemi-Pour, Elaheh and Federice, Alexa and Feld, Jan and Fenig, Guidon and Firouzjaeiangalougah, Mojtaba and Fleisje, Erlend and Fortier-Chouinard, Alexandre and Engel, Julia Francesca and Fries, Tilman and Fortier, Reid and Fr{\´e}chet, Nadjim and Galipeau, Thomas and Gallegos, Sebasti{\´a}n and Gangji, Areez and Gao, Xiaoying and Garnache, Clo{\´e} and G{\´a}sp{\´a}r, Attila and Gavrilova, Evelina and Ghosh, Arijit and Gibney, Garreth and Gibson, Grant and Godager, Geir and Goff, Leonard and Gong, Da and Gonz{\´a}lez, Javier and Gretton, Jeremy and Griffa, Cristina and Grigoryeva, Idaliya and Grtting, Maja and Guntermann, Eric and Guo, Jiaqi and Gugushvili, Alexi and Habibnia, Hooman and H{\"a}ffner, Sonja and Hall, Jonathan D. and Hammar, Olle and Kordt, Amund Hanson and Hashimoto, Barry and Hartley, Jonathan S. and Hausladen, Carina I. and Havr{\´a}nek, Tom{\´a}š and Hazen, Jacob and He, Harry and Hepplewhite, Matthew and Herrera-Rodriguez, Mario and Heuer, Felix and Heyes, Anthony and Ho, Anson T. Y. and Holmes, Jonathan and Holzknecht, Armando and Hsu, Yu-Hsiang Dexter and Hu, Shiang-Hung and Huang, Yu-Shiuan and Huebener, Mathias and Huber, Christoph and Huynh, Kim P. and Irsova, Zuzana and Isler, Ozan and Jakobsson, Niklas and Frith, Michael James and Jananji, Rapha{\"e}l and Jayalath, Tharaka A. and Jetter, Michael and John, Jenny and Forshaw, Rachel Joy and Juan, Felipe and Kadriu, Valon and Karim, Sunny and Kelly, Edmund and Dang, Duy Khanh Hoang and Khushboo, Tazia and Kim, Jin and Kjellsson, Gustav and Kjelsrud, Anders and Kotsadam, Andreas and Korpershoek, Jori and Krashinsky, Lewis and Kundu, Suranjana and Kustov, Alexander and Lalayev, Nurlan and Langlois, Audr{\´e}e and Laufer, Jill and Lee-Whiting, Blake and Leibing, Andreas and Lenz, Gabriel and Levin, Joel and Li, Peng and Li, Tongzhe and Lin, Yuchen and Listo, Ariel and Liu, Dan and Lu, Xuewen and Lukmanova, Elvina and Luscombe, Alex and Lusher, Lester R. and Lyu, Ke and Ma, Hai and M{\"a}der, Nicolas and Makate, Clifton and Malmberg, Alice and Maitra, Adit and Mandas, Marco and Marcus, Jan and Margaryan, Shushanik and M{\´a}rk, Lili and Martignano, Andres and Marsh, Abigail and Masetto, Isabella and McCanny, Anthony and McManus, Emma and McWay, Ryan and Metson, Lennard and Kinge, Jonas Minet and Mishra, Sumit and Mohnen, Myra and M{\"o}ller, Jakob and Montambeault, Rosalie and Montpetit, S{\´e}bastien and Morin, Louis-Philippe and Morris, Todd and Moser, Scott and Motoki, Fabio and Muehlenbachs, Lucija and Musulan, Andreea and Musumeci, Marco and Nabin, Munirul and Nchare, Karim and Neubauer, Florian and Nguyen, Quan M. P. and Nguyen, Tuan and Nguyen-Tien, Viet and Niazi, Ali and Nikolaishvili, Giorgi and Nordstrom, Ardyn and N{\"u}, Patrick and Odermatt, Angela and Olson, Matt and ien, Henning and {\"O}lkers, Tim and Vert, Miquel Oliver i. and Oral, Emre and Oswald, Christian and Ousman, Ali and {\"O}zak, {\"O}mer and Pandey, Shubham and Pavlov, Alexandre and Pelli, Martino and Penheiro, Romeo and Park, RyuGyung and Martel, Eva P{\´e}rez and Petrovičov{\´a}, Tereza and Phan, Linh and Prettyman, Alexa and Proch{\´a}zka, Jakub and Putri, Aqila and Quandt, Julian and Qiu, Kangyu and Nguyen, Loan Quynh Thi and Rahman, Andaleeb and Rea, Carson H. and Reiremo, Adam and Ren{\´e}e, La{\"e}titia and Richardson, Joseph and Rivers, Nicholas and Rodrigues, Bruno and Roelofs, William and Roemer, Tobias and Rogeberg, Ole and Rose, Julian and Roskos-Ewoldsen, Andrew and Rosmer, Paul and Sabada, Barbara and Saberian, Soodeh and Salamanca, Nicolas and Sator, Georg and Sawyer, Antoine and Scates, Daniel and Schl{\"u}ter, Elmar and Sells, Cameron and Sen, Sharmi and Sethi, Ritika and Shcherbiak, Anna and Sogaolu, Moyosore and Soosalu, Matt and Srensen, Erik and Sovani, Manali and Spencer, Noah and Staubli, Stefan and Stans, Renske and Stewart, Anya and Stips, Felix and Stockley, Kieran and Strobel, Stephenson and Struby, Ethan and Tang, John and Tanrisever, Idil and Yang, Thomas Tao and Tastan, Ipek and Tatić, Dejan and Tatlow, Benjamin and Seuyong, F{\´e}raud Tchuisseu and Th{\´e}riault, R{\´e}mi and Thivierge, Vincent and Tian, Wenjie and Toma, Filip-Mihai and Totarelli, Maddalena and Tran, Van-Anh and Truong, Hung and Tsoy, Nikita and Tuzcuoglu, Kerem and Ubfal, Diego and Villalobos, Laura and Walterskirchen, Julian and Wang, Joseph Taoyi and Wattal, Vasudha and Webb, Matthew D. and Weber, Bryan and Weisser, Reinhard and Weng, Wei-Chien and Westheide, Christian and White, Kimberly and Winter, Jacob and Wochner, Timo and Woerman, Matt and Wong, Jared and Woodard, Ritchie and Wroński, Marcin and Yazbeck, Myra and Yang, Gustav Chung and Yap, Luther and Yassin, Kareman and Ye, Hao and Yoon, Jin Young and Yurris, Chris and Zahra, Tahreen and Zaneva, Mirela and Zayat, Aline and Zhang, Jonathan and Zhao, Ziwei and Yaolang, Zhong}, title = {Mass reproducibility and replicability}, series = {I4R discussion paper series}, journal = {I4R discussion paper series}, number = {107}, publisher = {Institute for Replication}, address = {Essen}, issn = {2752-1931}, pages = {250}, year = {2024}, abstract = {This study pushes our understanding of research reliability by reproducing and replicating claims from 110 papers in leading economic and political science journals. The analysis involves computational reproducibility checks and robustness assessments. It reveals several patterns. First, we uncover a high rate of fully computationally reproducible results (over 85\%). Second, excluding minor issues like missing packages or broken pathways, we uncover coding errors for about 25\% of studies, with some studies containing multiple errors. Third, we test the robustness of the results to 5,511 re-analyses. We find a robustness reproducibility of about 70\%. Robustness reproducibility rates are relatively higher for re-analyses that introduce new data and lower for re-analyses that change the sample or the definition of the dependent variable. Fourth, 52\% of re-analysis effect size estimates are smaller than the original published estimates and the average statistical significance of a re-analysis is 77\% of the original. Lastly, we rely on six teams of researchers working independently to answer eight additional research questions on the determinants of robustness reproducibility. Most teams find a negative relationship between replicators' experience and reproducibility, while finding no relationship between reproducibility and the provision of intermediate or even raw data combined with the necessary cleaning codes.}, language = {en} } @article{ChenLiZhangetal.2019, author = {Chen, Shun-Gang and Li, Ji and Zhang, Fan and Xiao, Bo and Hu, Jia-Ming and Cui, Yin-Qiu and Hofreiter, Michael and Hou, Xin-Dong and Sheng, Gui-Lian and Lai, Xu-Long and Yuan, Jun-Xia}, title = {Different maternal lineages revealed by ancient mitochondrial genome of Camelus bactrianus from China}, series = {Mitochondrial DNA Part A}, volume = {30}, journal = {Mitochondrial DNA Part A}, number = {7}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2470-1394}, doi = {10.1080/24701394.2019.1659250}, pages = {786 -- 793}, year = {2019}, abstract = {Domestic Bactrian camel (Camelus bactrianus) used to be one of the most important livestock species in Chinese history, as well as the major transport carrier on the ancient Silk Road. However, archeological studies on Chinese C. bactrianus are still limited, and molecular biology research on this species is mainly focused on modern specimens. In this study, we retrieved the complete mitochondrial genome from a C. bactrianus specimen, which was excavated from northwestern China and dated at 1290-1180 cal. Phylogenetic analyses using 18 mitochondrial genomes indicated that the C. bactrianus clade was divided into two maternal lineages. The majority of samples originating from Iran to Japan and Mongolia belong to subclade A1, while our sample together with two Mongolian individuals formed the much smaller subclade A2. Furthermore, the divergence time of these two maternal lineages was estimated as 165 Kya (95\% credibility interval 117-222 Kya), this might indicate that several different evolutionary lineages were incorporated into the domestic gene pool during the initial domestication process. Bayesian skyline plot (BSP) analysis a slow increase in female effective population size of C. bactrianus from 5000 years ago, which to the beginning of domestication of C. bactrianus. The present study also revealed that there were extensive exchanges of genetic information among C. bactrianus populations in regions along the Silk Road.}, language = {en} } @article{LiuJahnDongetal.2003, author = {Liu, Xiaochun and Jahn, Bor-Ming and Dong, Shuwen and Li, Huimin and Oberh{\"a}nsli, Roland}, title = {Neoproterozoic granitoid did not record ultrahigh-pressure metamorphism from the Southern Dabieshan of China}, issn = {0022-1376}, year = {2003}, abstract = {It has been often debated whether all granitic gneisses associated with coesite-bearing eclogites in southern Dabieshan, China, have also been subjected to ultrahigh-pressure (UHP) metamorphism. We show here that a metagranitoid adjacent to the Bixiling eclogite-ultramafic complex has preserved primary granitic textures and an igneous mineral assemblage of biotite + plagioclase + microcline + quartz + allanite +/- amphibole. The absence of UPH recrystallization for the metagranitoid is particularly manifested by the conservation of euhedral-zoned plagioclase phenocrysts, the lack of corona garnets around igneous biotite, and the presence of an igneous mineral assemblage in zircons. The only metamorphic overprint was the epidote-amphibolite facies metamorphism characterized by the assemblage of biotite + phengiticmica + epidote + albite + K-feldspar + quartz +/- amphibole Metamorphic conditions are estimated at ca. 550degrees-680degreesC and 6-13 kbar for the metagranitoid and its amphibolitic enclave. Geochemically, the metagranitoid is similar to its country gneiss and shows an affinity to volcanic arc granitoid. Zircon U-Pb dating suggests that the Bixiling metagranitoid was emplaced during the Neoproterozoic (729+/-4 Ma), when most other granitic rocks and the protoliths of eclogite were also formed in Dabieshan. Taking into account the discovery of non-UHP granitic gneisses in other places, we argue that part of Neoproterozoic granitic rocks in the Dabieshan and Sulu terranes have escaped UHP metamorphism during the Triassic deep subduction of the continental crust as a consequence of a lack of penetrative deformation and fluid-rock interaction}, language = {en} } @article{LiChenWangetal.2013, author = {Li, Jian and Chen, You-Peng and Wang, Zi-Neng and Liu, Tie-Bin and Chen, Dan and Dong, Yun-Peng and Hocher, Berthold}, title = {A functional fetal HSD11B2[CA]n microsatellite polymorphism is associated with maternal serum cortisol concentrations in pregnant women}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, volume = {38}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000355761}, pages = {132 -- 141}, year = {2013}, abstract = {Background/Aims: Cortisol plays an important role during pregnancy. It controls maternal glucose metabolism and fetal development. Cortisol metabolism is partially controlled by the 11b-HSD2. This enzyme is expressed in the kidney and human placenta. The activity of the enzyme is partially controlled by functional polymorphisms: the HSD11B2[CA]n microsatellite polymorphism. The impact of this functional gene polymorphism on cortisol metabolism and potential effects on the newborn's is unknown so far. Methods: In the current prospective birth cohort study in southern Asia, we analyzed the association of the HSD11B2[CA]n microsatellite polymorphisms in 187 mothers and their newborn's on maternal and newborn's serum cortisol concentrations. Results: Using multivariable regression analyses considering known confounding ( gestational age, newborn's gender, the labor uterine contraction states and the timing during the day of blood taking), we showed that the fetal HSD11B2[CA]n microsatellite polymorphisms in the first intron was related to maternal cortisol concentration ( R2=0.26, B=96.27, p=0.007), whereas as the newborn's cortisol concentrations were independent of fetal and maternal HSD11B2[CA] n microsatellite polymorphism. Conclusions: Our study showed for the first time that the fetal HSD11B2[CA]n microsatellite polymorphism of the HSD11B2 gene in healthy uncomplicated human pregnancy is associated with maternal cortisol concentration. This indicates that fetal genes controlling cortisol metabolism may affect maternal cortisol concentration and hence physiology in healthy pregnant women.}, language = {en} } @article{LiWangChenetal.2012, author = {Li, Jian and Wang, Zi-Neng and Chen, You-Peng and Dong, Yun-Peng and Shuai, Han-Lin and Xiao, Xiao-Min and Reichetzeder, Christoph and Hocher, Berthold}, title = {Late gestational maternal serum cortisol is inversely associated with fetal brain growth}, series = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, volume = {36}, journal = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, number = {3}, publisher = {Elsevier}, address = {Oxford}, issn = {0149-7634}, doi = {10.1016/j.neubiorev.2011.12.006}, pages = {1085 -- 1092}, year = {2012}, abstract = {To analyze the association between fetal brain growth and late gestational blood serum cortisol in normal pregnancy.Blood total cortisol was quantified at delivery in 432 Chinese mother/child pairs. Key inclusion criteria of the cohort were: no structural anomalies of the newborn, singleton pregnancy, no alcohol abuse, no drug abuse or history of smoking no hypertensive disorders and no impairment of glucose tolerance and no use of steroid medication during pregnancy. Differential ultrasound examination of the fetal body was done in early (gestational day 89.95 +/- 7.31), middle (gestational day 160.17 16.12) and late pregnancy (gestational day 268.89 +/- 12.42). Newborn's cortisol was not correlated with any of the ultrasound measurements during pregnancy nor with birth weight. Multivariable regression analysis, considering timing of the ultrasound examination, the child's sex, maternal BMI, maternal age, maternal body weight at delivery, the timing of cortisol measurement and maternal uterine contraction states, revealed that maternal serum total cortisol was significantly negative correlated with ultrasound parameters describing the fetal brain: late biparietal diameter (R-2 =0.512, p =0.009), late head circumference (R-2 = 0.498, p= 0.001), middle biparietal diameter (R-2= 0.819, p = 0.013), middle cerebellum transverse diameter R-2 = 0.76, p= 0.014) and early biparietal diameter(R-2 = 0.819, p = 0.013). The same analysis revealed that birth weight as well as ultrasound parameters such as abdominal circumference and femur length were not correlated to maternal cortisol levels. In conclusion, our study demonstrates that maternal cortisol secretion within physiological ranges may be inversely correlated to fetal brain growth but not to birth weight. It remains to be demonstrated whether maternal cortisol secretion negatively influencing fetal brain growth translates to adverse neurological outcomes in later life.}, language = {en} } @article{LiChenDongetal.2014, author = {Li, Jian and Chen, You-Peng and Dong, Yun-Peng and Yu, Cal-Hong and Lu, Yong-Ping and Xiao, Xiao-Min and Hocher, Berthold}, title = {The impact of umbilical blood flow regulation on fetal development differs in diabetic and non-diabetic pregnancy}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, volume = {39}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000355815}, pages = {369 -- 377}, year = {2014}, abstract = {Background/Aims: Diabetes is well-known to influence endothelial function. Endothelial function and blood flow regulation might be different in diabetic and non-diabetic pregnancy. However, the impact of umbilical blood flow regulation in gestational diabetes on fetal development is unknown so far. Methods: In a prospective birth cohort study, we analyzed the association of the umbilical artery Doppler indices (pulsatility index, resistance index and systolic/diastolic ratio) and fetal size measures (biparietal diameter, head circumference, abdominal circumference, femur length and birth weight) in 519 non-gestational diabetes mellitus pregnancies (controls) and 226 gestational diabetes mellitus pregnancies in middle (day 160.32 +/- 16.29 of gestation) and late (day 268.12 +/- 13.04 of gestation) pregnancy. Results: Multiple regression analysis considering confounding factors (gestational day of ultrasound examination, offspring sex, maternal body mess index before pregnancy, maternal age at delivery, maternal body weight at delivery and maternal hypertension) showed that umbilical artery Doppler indices (pulsatility index, resistance index and systolic/diastolic ratio) were associated with fetal head circumference and femur length in middle gestational diabetes mellitus pregnancy but not in non-gestational diabetes mellitus pregnancy. Head circumference, biparietal diameter, abdominal circumference and femur length in mid gestation were smaller in fetus of gestational diabetes mellitus pregnancy versus non-gestational diabetes mellitus pregnancy. In contrast to non-gestational diabetes mellitus pregnancy in late gestation, umbilical artery Doppler indices in gestational diabetes mellitus pregnancy were not associated with ultrasound measures of fetal growth. Birth weight was slightly increased in gestational diabetes mellitus pregnancy as compared to non-gestational diabetes mellitus pregnancy. Conclusions: The impact of umbilical blood flow on fetal growth is time dependent in human gestational diabetes mellitus and non-gestational diabetes mellitus pregnancy. In gestational diabetes mellitus pregnancy umbilical blood flow is critical for organ development in much earlier stages of pregnancy as compared to non-gestational diabetes mellitus pregnancy. The physiological and molecular pathways why there is a catch up growth in later times of gestational diabetes mellitus pregnancy resulting in larger gestational diabetes mellitus babies at birth needs to be addressed in further studies.}, language = {en} } @article{LiWangChenetal.2012, author = {Li, Jian and Wang, Zi-Neng and Chen, You-Peng and Dong, Yun-Peng and Mao, Xiao-Min and Hocher, Berthold}, title = {Association of fetal but not maternal P-glycoprotein C3435T polymorphism with fetal growth and birth weight, a possible risk factor for cardiovascular diseases in later life}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {58}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {9-10}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2012.110920}, pages = {1085 -- 1089}, year = {2012}, abstract = {Background: The multidrug transporter P-glycoprotein (PGP) is expressed in the human placenta. In particular the C3435T ABCB1 polymorphism was associated with altered tissue expression of PGP in the human placenta. However, the potential functional impact of this polymorphism on the offspring is unknown so far. Methods: We analyzed the impact of the ABCB1/C3435T polymorphism on fetal growth in 262 mother/child pairs. Fetal growth was assessed by differential ultrasound examination of the fetal body prior to birth and by measuring birth weight. Results: The maternal ABCB1/C3435T polymorphism showed no trend for an association with birth weight or any ultrasound parameter describing late gestational fetal body shape. Genotyping the newborns, however, demonstrated that newborns carrying two copies of the T allele had a birth weight of 3176.39 g, whereas CT and CC newborns had a birth weight of 3345.04 g (p = 0.022). Adjusting for gestational age at delivery, child's gender, maternal BM1, maternal age and body weight at delivery confirmed this finding (p = 0.009). Considering gestational day of late ultrasound examination, gestational age at delivery, child's gender, maternal BMI, maternal age and maternal body weight at delivery, the fetal ABCB1/C3435T genotype revealed likewise a significant negative correlation with abdominal diameter and abdominal circumference (R-2 = 0.538, p = 0.010 and R-2 = 0.534, p = 0.005, respectively). Conclusions: Low birth weight may be a risk factor for cardiovascular diseases in later life. The fetal ABCB1/C3435T gene polymorphism may contribute to this risk. Since PGP controls transport of various biological agents, we suggest that PGP is involved in the transport of biological agents to the fetus that are important for normal fetal growth.}, language = {en} } @article{LiFayFreseetal.2014, author = {Li, Wen-Dong and Fay, Doris and Frese, Michael and Harms, Peter D. and Gao, Xiang Yu}, title = {Reciprocal relationship between proactive personality and work characteristics: A latent change score approach}, series = {Journal of applied psychology}, volume = {99}, journal = {Journal of applied psychology}, number = {5}, publisher = {American Psychological Association}, address = {Washington}, issn = {0021-9010}, doi = {10.1037/a0036169}, pages = {948 -- 965}, year = {2014}, abstract = {Previous proactivity research has predominantly assumed that proactive personality generates positive environmental changes in the workplace. Grounded in recent research on personality development from a broad interactionist theoretical approach, the present article investigates whether work characteristics, including job demands, job control, social support from supervisors and coworkers, and organizational constraints, change proactive personality over time and, more important, reciprocal relationships between proactive personality and work characteristics. Latent change score analyses based on longitudinal data collected in 3 waves across 3 years show that job demands and job control have positive lagged effects on increases in proactive personality. In addition, proactive personality exerts beneficial lagged effects on increases in job demands, job control, and supervisory support, and on decreases in organizational constraints. Dynamic reciprocal relationships are observed between proactive personality with job demands and job control. The revealed corresponsive change relationships between proactive personality and work characteristics contribute to the proactive personality literature by illuminating more nuanced interplays between the agentic person and work characteristics, and also have important practical implications for organizations and employees.}, language = {en} } @article{PengZhuDongetal.2015, author = {Peng, Tao and Zhu, Ganghua and Dong, Yunpeng and Zeng, Junjie and Li, Wei and Guo, Weiwei and Chen, Yong and Duan, Maoli and Hocher, Berthold and Xie, Dinghua}, title = {BMP4: a possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {61}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {9}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2015.150217}, pages = {1171 -- 1178}, year = {2015}, abstract = {Background: Previous studies have shown that BMP4 may play an important part in the development of auditory neurons (ANs), which are degenerated in sensorineural hearing loss. However, whether BMP4 can promote sensory fate specification from mesenchymal stromal cells (MSCs) is unknown so far. Methods: MSCs isolated from Sprague-Dawley (SD) rats were confirmed by expression of MSC markers using flow cytometry and adipogenesis/osteogenesis using differentiation assays. MSCs treated with a complex of neurotrophic factors (BMP4 group and non-BMP4 group) were induced into auditory neuron-like cells, then the differences between the two groups were analyzed in morphological observation, cell growth curve, qRT-PCR, and immunofluorescence. Results: Flow cytometric analysis showed that the isolated cells expressed typical MSC surface markers. After adipogenic and osteogenic induction, the cells were stained by oil red O and Alizarin Red. The neuronal induced cells were in the growth plateau and had special forms of neurons. In the presence of BMP4, the inner ear genes NF-M, Neurog1, GluR4, NeuroD, Calretinin, NeuN, Tau, and GATA3 were up-regulated in MSCs. Conclusions: MSCs have the capacity to differentiate into auditory neuron-like cells in vitro. As an effective inducer, BMP4 may play a key role in transdifferentiation.}, language = {en} }