@article{SchildknechtPapeMeiseretal.2015, author = {Schildknecht, Stefan and Pape, Regina and Meiser, Johannes and Karreman, Christiaan and Strittmatter, Tobias and Odermatt, Meike and Cirri, Erica and Friemel, Anke and Ringwald, Markus and Pasquarelli, Noemi and Ferger, Boris and Brunner, Thomas and Marx, Andreas and Moeller, Heiko M. and Hiller, Karsten and Leist, Marcel}, title = {Preferential Extracellular Generation of the Active Parkinsonian Toxin MPP+ by Transporter-Independent Export of the Intermediate MPDP+}, series = {Antioxidants \& redox signaling}, volume = {23}, journal = {Antioxidants \& redox signaling}, number = {13}, publisher = {Liebert}, address = {New Rochelle}, issn = {1523-0864}, doi = {10.1089/ars.2015.6297}, pages = {1001 -- 1016}, year = {2015}, abstract = {Aims: 1-Methyl-4-phenyl-tetrahydropyridine (MPTP) is among the most widely used neurotoxins for inducing experimental parkinsonism. MPTP causes parkinsonian symptoms in mice, primates, and humans by killing a subpopulation of dopaminergic neurons. Extrapolations of data obtained using MPTP-based parkinsonism models to human disease are common; however, the precise mechanism by which MPTP is converted into its active neurotoxic metabolite, 1-methyl-4-phenyl-pyridinium (MPP+), has not been fully elucidated. In this study, we aimed to address two unanswered questions related to MPTP toxicology: (1) Why are MPTP-converting astrocytes largely spared from toxicity? (2) How does MPP+ reach the extracellular space? Results: In MPTP-treated astrocytes, we discovered that the membrane-impermeable MPP+, which is generally assumed to be formed inside astrocytes, is almost exclusively detected outside of these cells. Instead of a transporter-mediated export, we found that the intermediate, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+), and/or its uncharged conjugate base passively diffused across cell membranes and that MPP+ was formed predominately by the extracellular oxidation of MPDP+ into MPP+. This nonenzymatic extracellular conversion of MPDP+ was promoted by O-2, a more alkaline pH, and dopamine autoxidation products. Innovation and Conclusion: Our data indicate that MPTP metabolism is compartmentalized between intracellular and extracellular environments, explain the absence of toxicity in MPTP-converting astrocytes, and provide a rationale for the preferential formation of MPP+ in the extracellular space. The mechanism of transporter-independent extracellular MPP+ formation described here indicates that extracellular genesis of MPP+ from MPDP is a necessary prerequisite for the selective uptake of this toxin by catecholaminergic neurons.}, language = {en} } @article{LohrenBlagojevicFitkauetal.2015, author = {Lohren, Hanna and Blagojevic, Lara and Fitkau, Romy and Ebert, Franziska and Schildknecht, Stefan and Leist, Marcel and Schwerdtle, Tanja}, title = {Toxicity of organic and inorganic mercury species in human neurons and human astrocytes}, series = {Journal of trace elements in medicine and biology}, volume = {32}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier}, address = {Jena}, issn = {0946-672X}, doi = {10.1016/j.jtemb.2015.06.008}, pages = {200 -- 208}, year = {2015}, abstract = {Organic mercury (Hg) species exert their toxicity primarily in the central nervous system. The food relevant Hg species methylmercury (MeHg) has been frequently studied regarding its neurotoxic effects in vitro and in vivo. Neurotoxicity of thiomersal, which is used as a preservative in medical preparations, is to date less characterised. Due to dealkylation of organic Hg or oxidation of elemental Hg, inorganic Hg is present in the brain albeit these species are not able to readily cross the blood brain barrier. This study compared for the first time toxic effects of organic MeHg chloride (MeHgCl) and thiomersal as well as inorganic mercury chloride (HgCl2) in differentiated human neurons (LUHMES) and human astrocytes (CCF-STTG1). The three Hg species differ in their degree and mechanism of toxicity in those two types of brain cells. Generally, neurons are more susceptible to Hg species induced cytotoxicity as compared to astrocytes. This might be due to the massive cellular mercury uptake in the differentiated neurons. The organic compounds exerted stronger cytotoxic effects as compared to inorganic HgCl2. In contrast to HgCl2 exposure, organic Hg compounds seem to induce the apoptotic cascade in neurons following low-level exposure. No indicators for apoptosis were identified for both inorganic and organic mercury species in astrocytes. Our studies clearly demonstrate species-specific toxic mechanisms. A mixed exposure towards all Hg species in the brain can be assumed. Thus, prospectively coexposure studies as well as cocultures of neurons and astrocytes could provide additional information in the investigation of Hg induced neurotoxicity.}, language = {en} }